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Abstract-Multispectral cameras collect image data with a greater number of spectral channels than traditional 

trichromatic sensors, thus providing spectral information at a higher level of detail. Such data are useful in various fields, 
such as remote sensing, materials science, bio-photonics, and environmental monitoring. The massive scale of multispectral 
data – at high resolutions in the spectral, spatial and temporal dimensions – has long presented a major challenge in 
spectrometer design. With recent developments in sampling theory, this problem has become more manageable through 
use of under-sampling and constrained reconstruction techniques. This paper presents an overview of these state-of-the-art 
multispectral acquisition systems, with a particular focus on snapshot multispectral capture, from a signal processing 
perspective. We propose that under-sampling-based multispectral cameras can be understood and compared by examining 
the efficiency of their sampling schemes, which we formulate as the spectral sensing coherence information between their 
sensing matrices and spectrum-specific bases learned from a large-scale multispectral image database. We analyze existing 
snapshot multispectral cameras in this manner, and additionally discuss their optical performance in terms of light 
throughput and system complexity. 

 

I.   INTRODUCTION 

The spectrum of a point in a scene is represented by the distribution of its electromagnetic radiation over a range of 

wavelengths. In conventional digital imaging devices, spectra are measured using three-channel RGB (red, green, blue) 

sensors, which are designed to coincide with the tristimulus color measurements in the human visual system. However, 

a triple representation fails to capture the intricate details of natural scene spectra, which arise from the diversity and 

complexity of illumination and reflectance spectra in the real world. Since various material and object properties can 

be inferred from detailed spectra, acquisition systems for precise spectral measurements can be effective tools for 

scientific research and engineering applications. For instance, spectral data can greatly facilitate cancer detection and 

diagnosis, since certain types of cancer cells have spectral characteristics that differ from those of normal cells [1]. 

Spectral data can also yield a rich set of features for image analysis. To take advantage of this, spectral capture 

technology has become widely used in military security, environmental monitoring, biological sciences, medical 

diagnostics, scientific observation, and many other fields [1-7]. 

Studies in spectrum acquisition have been conducted for decades. Early spectrometers acquire only a single beam 

of light at a time, which significantly limits their utility for measuring full scenes. Later work focused on efficient, 

high resolution capture of both the spectral and spatial dimensions. Recently, breakthroughs in temporal resolution 

have been achieved, which enable simultaneous acquisition of dynamic scenes in the spatial, temporal and spectral 

dimensions [8][9][10]. 



 

 

Figure 1. Sensing matrices of existing sampling schemes for multispectral acquisition. The spectral and spatial data matrix is high-

dimensional, and current camera sensors can capture only a low-dimensional projection of the spectral data. The projection process 

can be regarded as a sensing matrix for the high-dimensional spectral data cube, and state-of-the-art computational multispectral 

imaging methods can be summarized as different sensing matrices. 

 

Traditional sampling methods [11-17], which are based on the Nyquist-Shannon sampling theorem, measure the 

signal at a certain constant sampling rate on each of the three dimensions. Each sample contains the signal information 

at a single sampling location, time and wavelength. Sampling multispectral images in all three spatio-spectral 

dimensions requires measurement at a massive scale, and thus making full-sampling schemes, such as those based on 

scanning or interferometry, impractical in this scenario. That is because scanning a scene on either the spatial 

dimension or the spectral dimension entails a major sacrifice in the temporal sampling rate. As a result, a full-sampling 

approach can only be applied in practice on static or slow-moving scenes. 

Capitalizing on recent advances in compressive sensing theory, several techniques have been developed based on 

under-sampling and constrained reconstruction, such as Computed Tomography Imaging Spectrometry (CTIS) [18] 

and Coded Aperture SnapShot Imaging (CASSI). Within the CASSI paradigm, there are Single Dispersive CASSI 

[19], Dual Dispersive CASSI [20][21], its Dual-Coded 3D version called the Dual-Coded Snapshot Imager [22], the 

colored 3D version called the Colored Coded Aperture Spectral Camera Imager (CCASSI)[23][24][25][47], Prism-



Mask Video Imaging Spectrometry (PMVIS) [26][27], and Single Pixel Camera Spectrometry (SPCS) [28]. The 

aforementioned systems are all snapshot multispectral cameras, which means that the spectral data are measured in a 

single exposure (shot) on the camera sensor. There are also other systems that capture multispectral data at video rates, 

but with more than one measurement per frame, by taking advantage of a rapidly varying optical element such as a 

spatial light modulator (SLM) or digital micromirror device (DMD), or by adding another camera into the optical path 

[30][31][32][45]. These methods all capture fewer measurements than full-sampling schemes and reconstruct spectra 

from incomplete data with the aid of regularized reconstruction theory (e.g., utilizing knowledge of signal sparsity in 

some basis).  

A diagram of several coded-aperture-based under-sampling snapshot schemes is shown in Figure 1. For better 

visualization, the target 3D spectral data cube (x, y, λ) is shown using a 2D matrix representing both the spatial (x) 

domain and the spectral (λ) domain. Such a high-dimensional spectral data cube is not possible to capture in a single 

exposure using prevalent camera sensors. This has motivated the aforementioned under-sampling systems which first 

capture a low-dimensional projection of the original high-dimensional spectral data. The projection process can be 

represented as a sensing matrix that projects the spectral and spatial information into a low-dimensional measurement, 

which is then computationally decoded. To multiplex the spectral and spatial information in a solvable manner, as 

shown in Figure 1, the coded aperture based under-sampling schemes usually manipulate the original data matrix in 

two ways: shearing and spatial modulation. These two transforms effectively reorganize the entries of the data matrix 

and are operable in practice (shearing by a prism or diffraction grating, and spatial modulation by an occlusion mask, 

spatial light modulator or digital micromirror device). 

Depending on their optical configurations and exploiting statistical properties of the spectrum data, the 

aforementioned methods employ different sampling strategies, which result in different sensing performance. In fact, 

the sampling scheme of a multispectral acquisition system has a significant effect on the reconstruction quality of 

spectra. On the other hand, in spectrometer design, sampling is also determined by the spectrometer optics and 

practical issues (e.g. calibration). With the optical design flexibility that is possible through the combination of optical 

elements (e.g., gratings and prisms) and computational elements (e.g., spatial light modulators or digital micromirror 

devices), we posit that the effectiveness and efficiency of the sampling scheme should become the principal factor in 

the design of spectrometers.  

Our intent in this article is to present a comprehensive discussion and analysis of existing coded aperture based 

multispectral snapshot systems, and link them to different sampling schemes from the signal processing perspective. 

For each of these coded aperture based under-sampling schemes, efficiency is examined based on the spectral sensing 

coherence information between its sensing matrix and sparse spectral bases constructed from a multispectral image 

dataset. In addition, the optical properties of the spectrometers, i.e. light throughput, noise tolerance, feasibility and 

complexity, are discussed as well. We hope that these analyses and discussions not only provide readers with fresh 

insight on multispectral imaging, but also serve as guidance for designing new multispectral cameras and conducting 

further study of existing methods. 



II.   FULL-SAMPLING SYSTEMS 

While mostly focusing on under-sampling techniques for multispectral capture, we also paint a fuller picture of 

multispectral imaging by first reviewing systems designed for full-sampling schemes. Conventional multispectral 

image acquisition systems are generally based on the Nyquist-Shannon sampling theorem, and thus they sample the 

signal at twice its maximal frequency. Therefore, due to the considerable amount of data, a sacrifice in either spatial 

or temporal resolution is needed for these cameras. Such a sacrifice may make full sampling schemes less practical, 

thus motivating systems based on compressive measurements.  

In spite of the low latency of capture, full-sampling methods for multispectral image acquisition have become 

widely used in practice. We introduce the basic principles and analyze the performance of full-sampling multispectral 

acquisition systems in this section, including three conventional multispectral cameras: filter-based spectrometers, 

scanning spectrometers, and interferometry-based methods.   

Filter-based spectrometers record a sequence of images using a different color filter with each imaging exposure, 

which effectively samples a set of full spatial resolution images over the spectral range at the expense of temporal 

resolution. These spectrometers can be easily implemented using a rotating wheel of gel filters, or electronically 

tunable filters which are typically based on birefringent liquid crystal plates. The measurement scheme of filter-based 

spectrometers can be viewed as spectral sampling over the temporal domain, with the spatial resolution fully preserved. 

In such a system, it is important for the color filters to be fabricated with an anti-reflective coating, to minimize 

reductions in light throughput. 

Instead of varying the filters temporally, scanning spectrometers sweep a spectral sensing device over the scene, 

sacrificing temporal resolution to gain spatial resolution. Typically, scanning is performed in a whiskbroom or a 

pushbroom manner. The whiskbroom design captures the spectrum of a single spatial location at each time instant, 

and thus requires substantial time to obtain an entire 3D data cube. Rather than a pinhole aperture, the pushbroom 

design employs a slit aperture aligned with one of the two spatial dimensions (either x or y), and the spectrometer is 

translated along the other direction, providing much lower latency than the whiskbroom design. With a scanning-

based sensor, the exposure time can be lengthened to increase signal intensity. However, scanning spectrometers 

involve more mechanical and calibration complexity in practice.  

Interferometry techniques (a.k.a. Fourier transform spectral imaging), which are based on the principle of 

interference, project several sub-images onto the image sensor, each corresponding to a different color channel. 

Though a Fourier transform is required to reconstruct multispectral images from raw measurements, interferometry 

spectrometers are considered to be full-sampling systems because the number of measurements is equal to the number 

of pixels in the final reconstructed image. These methods sacrifice spatial resolution but avoid spatial discrepancies 

by directly measuring the spectra of scene points. For such systems, their complexity (with multiple imaging lenses) 

and precision requirements (on the order of nanometers) make them difficult to build and calibrate. 

III.   UNDER-SAMPLING SYSTEMS 

While many methods have been used to construct spectral imagers, this paper specifically compares coded aperture-

based under-sampling designs. The multispectral image information of a dynamic scene spans three domains – spatial, 

https://en.wikipedia.org/wiki/Fourier_transform


spectral and temporal – presenting an immense amount of data. Just a single second of uncompressed multispectral 

video with a typical sixty spectral bands and only one mega-pixel of spatial resolution is close to two gigabytes. 

Measuring this amount of data even with short exposure times is infeasible with full-sampling schemes. In capturing 

multispectral information at video rates, significant under-sampling is thus required. Several coded-aperture-based 

systems have been proposed for multispectral snapshot imaging or video capture. In limiting ourselves to such systems, 

it is helpful to explain why they are of particular interest to compressive spectral imaging. All spectral imagers take 

measurements of the form 

𝑔𝑖 = ∫ 𝑓(𝑥, 𝜆)ℎ𝑖(𝑥, 𝜆)𝑑𝑥𝑑𝜆,                                                                         ⑴  

where 𝑓(𝑥, 𝜆) is the unknown spectral image and ℎ𝑖(𝑥, 𝜆)  is the instrument function for the 𝑖th measurement. Such 

measurements may be point-wise, as in pushbroom systems for which ℎ𝑖 = δ(𝑥 − 𝑥𝑖 , 𝜆 − 𝜆𝑖) (δ(∙) is the Dirac delta 

function), or multiplexed, as in coded aperture or tomographic systems. Point-wise measurements, however, lack 

forward model coherence properties consistent with compressive measurement. For compressive measurement one 

would like to measure weighted groups of unrelated pixels. Representing the spectral data cube as a 2D space-

wavelength structure, CTIS-style systems integrate along lines through the data cube as illustrated in Figure . 

 

Figure 2. Spectral data measurement in the CTIS system. 

 

In the ideal case, one might instead integrate groups of pixels randomly selected from the data cube. Fully random 

strategies have been implemented for 2D imaging using single pixel cameras [50]. For tomographic imagers, such as 

spectral cameras, however, no simple physical mechanism exists for integrating random and independent voxel groups.  

The most common form of spectral imager is, of course, the RGB camera which uses color filter arrays to 

periodically isolate different color planes. The ideal spectral imager might be similar to an RGB camera but with more 

diverse and complex spectral filters. Several groups have indeed proposed or implemented spectral imagers using 

filter arrays [51][52]. Complex spectral filters are constructed from interference devices. Pixelated interference filters 

with complex spectral structure are, however, both expensive and difficult to fabricate. In using coded apertures we 

find physical advantages in the use of spatial modulation to measure spectral information analogous to the use of 

spatial delay lines to measure time. Femtosecond pulses are commonly measured using piezoelectric positioning 

systems with nanometer scale-resolution [53]. Native femtosecond time measurement devices do not exist. Similarly, 

it is much easier to use a coded aperture with micron scale features to encode a pixelated spectral filter with 10-100 



features than to create a similarly complex interference filter. To understand the basic resolution of a coded aperture 

system, we return to the 2D data cube discussed above. As illustrated in Figure 3, we consider a coded aperture with 

code feature size Δ. A spectral imaging system observes the unknown scene modulated by this code with the spectral 

planes dispersed by a grating or prism at the rate 
𝑑𝑥

𝑑𝜆
. A simple single disperser coded aperture system integrates along 

the wavelength dimension on detection, basically taking tomographic projections along this dimension. Due to the 

coded aperture, however, features along this dimension are modulated to improve the coherence of the forward model 

relative to simple tomographic projections. The rate of modulation is easily determined by considering the number of 

independent code features observed at each detection point. A given code feature is shifted spatially by  Γ
𝑑𝑥

𝑑𝜆
, where Γ 

is the separation between the shortest and longest wavelength observed. Therefore, integrating along a single 

wavelength channel, the number of independent wavelength coding elements observed is 𝑁 =
Γ𝑑𝑥

Δ𝑑𝜆
. The spectral 

resolution is 
Γ

𝑁
= Δ

𝑑𝜆

𝑑𝑥
 . For a grating of period 𝐿 imaged with a lens of focal length 𝐹, 

𝑑𝜆

𝑑𝑥
=

𝐿

𝐹
. With 𝐿 = 3 microns 

and 𝐹 = 3 cm, for example, a code feature of size 10 microns yields a spectral resolution of 10 nm, corresponding to 

30-40 spectral features over the visible range. Better spectral resolution can be obtained with faster gratings or longer 

focal lengths, but a multiplexing level of 30-40 is already fairly aggressive for snapshot imaging. Multiform integration 

methods will likely be necessary for more heavily multiplexed systems. 

We see therefore that coded apertures present a simple and straightforward mechanism for complex spectral filter 

implementation. In addition, depending on the implementation, they have reasonably local kernels that allow spatially 

separable data cube estimation.  

 

Figure 3. Diagram of the relationship between the spectral resolution and the code feature size.  

  
Even within the family of coded aperture spectral imagers, numerous design choices may be considered for code 

implementation, dispersive elements and sensing. Since we cannot comprehensively consider all design choices, we 

focus here on comparing the coherence of the forward model for several model systems based upon compressive 

coded aperture designs proposed and demonstrated over the past decade. We specifically do not consider implications 

of static codes implemented on slides vs. dynamic codes implemented using spatial light modulators. While spatial 

light modulators suffer scatter and numerical aperture limitations not found with static codes, we hope that the reader 

will find our comparisons without detailed physical implementations sufficiently compelling to postpone full 

consideration of practical issues. 

The coded aperture based under-sampling systems employ different sampling strategies according to their optical 

configurations and exploit statistical properties of multispectral data, which leads to different sensing performance in 



terms of spectral reconstruction quality. Figure 4 displays diagrams of four under-sampling multispectral cameras. It 

is worth noting that to facilitate comparison, the diagrams of the systems are drawn not according to the physical 

configurations proposed in the original papers [19][20][21][22][23][24][25][26][27], but rather so that their light paths 

are equivalent. For DD-CASSI, the original implementation in [20] has two dispersers to realize the dispersion and 

pixel-wise focusing (i.e., all the spectra of a single point passed through the mask focus on a single pixel), but its 

diagram in Figure 4 has only one disperser (grating) to achieve the same focusing by just tuning the location of the 

spatial modulator (mask) and the image sensor.  By representing systems with different kinds of modulation (i.e., 

point-wise coding and sheared coding) and imaging (pixel-wise focusing and dispersed imaging) using similar optical 

paths in Figure 4, the intrinsic differences between the four systems are revealed. As shown in Figure 4, the PMVIS, 

SD-CASSI and DD-CASSI systems only use a single mask to modulate the input light. The main difference between 

them is the placement of the mask. Both PMVIS and SD-CASSI place the mask on the imaging plane, leading to 

point-wise coding (i.e., all the spectra of a single point are either passed through or blocked by the mask), while the 

DD-CASSI places the mask in front of the image plane, which leads to a spectrally sheared coding (i.e. the 3D code 

is generated by stacking the same 2D code with different offsets). In contrast, the sensor of DD-CASSI is put on the 

image plane to achieve pixel-wise focusing, while PMVIS and SD-CASSI place the sensor behind the imaging plane, 

which leads to dispersed imaging (i.e., spectra of a single point dispersed to a set of pixels).  As for 3D-CASSI, two 

masks are utilized to achieve both the spatial and spectral modulation simultaneously, and the sensor is put on the 

focus plane to ensure pixel-wise focusing.  

 

 
  

 
Figure 4. Diagrams of four under-sampling multispectral cameras. 

 

A. Prism-Mask Video Imaging Spectrometry (PMVIS): 

Prism-Mask Imaging Spectrometry (PMVIS) [23, 24] straightforwardly acquires the spectra of scene points with 

the aid of a prism, and utilizes a mask with uniformly distributed holes that prevent overlaps of the dispersed spectra 

on the sensor, as shown in Figure 4(a). The spectral values of the sample points are measured directly without any 

spectral modulation, and there exists a known correspondence between spectral bands and sensor plane locations. 

Each of the measurements represents a certain spectral intensity value of its corresponding scene point. As shown in 

Figure 5, this system sacrifices spatial resolution to achieve high spectral resolution. Cao et al. [27, 28] extended this 

idea with a Hybrid PMVIS scheme in which a high spatial resolution RGB image is simultaneously acquired with 



each multispectral snapshot. Through a spatial interpolation within the spectral frame that is guided by the high 

resolution RGB image, a final result is computed with high resolution in both the spatial and spectral dimensions.  

B. Single Dispersive Coded Aperture SnapShot Imager (SD-CASSI):  

According to compressive sensing theory [54], if a signal has a low-dimensional representation (e.g., it can be 

represented as a sparse combination of orthonormal bases, like wavelets), then it can be reconstructed from a small 

set of measurements. With an appropriate sampling scheme, the samples needed to reconstruct a signal can be fewer 

than those specified by the Nyquist-Shannon limit. Based on this concept, various under-sampling systems have been 

developed to reconstruct entire spectra from fewer measurements. 

Wagadarikar et al. proposed the CASSI (Coded Aperture SnapShot Imager) system using a single disperser [19], 

which we will refer to as SD-CASSI. The spectral data cube is modulated by a coded mask and dispersion, as shown 

in Figure 4(b). Light rays of different wavelengths are modulated by an aperture code and then are offset differently 

by a dispersive element, which results in a coded and sheared 3D cube as illustrated in Figure 4 before projection onto 

the CCD sensor. The imager captures a 2D projection of the coded and sheared cube as shown in Figure 4. After the 

under-sampling and spectrally multiplexed capture, the complete data cube is reconstructed based on the prior that 

spatial-spectral information is sparse in the wavelet domain.  

The CASSI system implements measurement matrices of a specific structure, i.e., a replicated and slanted 2D 

code along the spectral dimension, illustrated as the SD-CASSI projection in Figure 5. The mathematical formulation 

of the 3D code can be expressed as 

𝒞(𝑥, 𝑦, 𝜆) = 𝒞2𝐷(𝑥 − ∆𝑠 ∙ 𝜆, 𝑦) = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐓𝐂),                                                        ⑵  

where (𝑥, 𝑦) and 𝜆 are the spatial and spectral indices, 𝒞2𝐷 is a randomly generated 2D spatial coding pattern, ∆𝑠 is 

the offset of each channel caused by dispersion, 𝐂 is the column vector form of the unsheared modulation code, 𝐓 is 

the shearing operation matrix, and 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(⋅) is the reshape function to transform the column vector to the original 

3D data cube. 

The image is modulated before the dispersive element, and then the disperser shears the modulated image. Thus 

the measurements can be modeled as 

𝐌 = 𝚽𝐒 = 𝑣𝑒𝑐𝑡𝑜𝑟(∑ 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐓𝑑𝑖𝑎𝑔(𝐂)𝐒))

𝜆

,                                                           ⑶ 

where 𝐌 is the column vector form of the measured values, 𝚽 is the sensing matrix, 𝐒 is the column vector form of 

the spectral data cube, 𝑑𝑖𝑎𝑔() is the diagonal operator to transform a vector to a same order square matrix with the 

elements of the input on the diagonal, 𝑟𝑒𝑠ℎ𝑎𝑝𝑒() is the reshaping operator to transform the column vector to the 3D 

data cube, and 𝑣𝑒𝑐𝑡𝑜𝑟() is the vectorizing operator for transforming the 2D matrix to a column vector. Mathematically, 

the operation 𝑣𝑒𝑐𝑡𝑜𝑟 ∑ 𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝜆  can be regarded as a down-sampling operator, and each element of the output 𝐌 is 

the summation of a set of certain elements of the input vector 𝐓𝑑𝑖𝑎𝑔(𝐂)𝐒. In other words, the combined operator 

𝑣𝑒𝑐𝑡𝑜𝑟 ∑ 𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝜆  can be represented by a single short matrix. Then, the sensing matrix of SD-CASSI can be 

represented by 

𝚽 = 𝚺𝐓𝑑𝑖𝑎𝑔(𝐂),                                                                                  ⑷ 



where 𝚺  denotes the short matrix form of the combined summation operator 𝑣𝑒𝑐𝑡𝑜𝑟 ∑ 𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝜆 . According to 

Equation (4), the imaging procedure represented by the summation matrix 𝚺 just follows the shearing operation 𝐓, 

which implies dispersed imaging, i.e. the spectra of a single point is dispersed to a set of pixels. The coding matrix 

𝑑𝑖𝑎𝑔(𝐂) manipulates the original spectral data cube directly, which corresponds to point-wise coding (i.e., all the 

spectra of a single point are either passed through or blocked by the mask).  

C. Dual Dispersive Coded Aperture SnapShot Imager (DD-CASSI): 

Since the basic CASSI system forms a sheared 3D spectral data cube, the observed snapshot is blurred by 

dispersion. To overcome this effect, Gehm et al. [20] proposed a dual-disperser architecture (DD-CASSI) in which 

two dispersers are symmetrically placed on the two sides of the coded aperture to produce an unsheared spectral cube 

with replicated slanted code. Lin et al. [21] proposed a single disperser (grating) system called Spatial-Spectral 

encoded Compressive Spectral Imager (SSCSI) to realize the same function as shown in Figure 4(b) but with less 

calibration difficulty than the dual-disperser CASSI.  Although these two systems adopt a similar code, they employ 

different sampling and reconstruction methods. A recursive offset code is applied by Gehm et al. [20] to achieve fast 

block-wise processing, while a random and non-uniform code as well as a dictionary-based reconstruction algorithm 

are employed by Lin et al. [21] to obtain high quality performance. 

DD-CASSI has exactly the same coding space as the SD-CASSI system, but the modulated 3D spectral data cube 

is not sheared (i.e., it is sheared back after modulation), as shown in Figure 5. Thus, the measurement matrix becomes 

𝚽 = 𝚺𝐓𝑻𝑑𝑖𝑎𝑔(𝐂)𝐓 = 𝚺𝑑𝑖𝑎𝑔(𝐓𝐂).                                                                            ⑸ 

According to Equation (5), the transpose 𝐓𝑻 is the inverse shearing matrix, which is used to unshear the sheared 

cube. As for the second term on the right of Equation (5), the diagonal coding matrix 𝑑𝑖𝑎𝑔(𝐓𝐂) modulates the original 

spectral data cube, which implies spectrally sheared coding (i.e. the 3D code is generated by stacking the same 2D 

code with different offsets). In this case, the shearing matrix 𝐓 only shears the 3D code, and the spectral data is not 

affected. Meanwhile, the summation matrix 𝚺 integrates the coded data cube along the spectral dimension, which 

represents the pixel-wise focusing, i.e., all the passed spectra of a single point are focused on a single pixel. 

D. Spatial-spectral Coded Compressive Spectral Imager (3D-CASSI): 

The feasible codes for both the basic CASSI and the non-spatially-modulated imager are limited by their physical 

modulation capabilities. Theoretically, 3D-CASSI, which encodes the spatial-spectral data cube randomly, can 

achieve more feasible codes and higher performance, as shown in Figure 4(b). However, the physical implementation 

of 3D-CASSI is not trivial.  

To approximate the 3D modulation in spatial-spectral data cube, two coded aperture based systems, i.e. the colored 

coded aperture spectral camera Imager (a.k.a.  CCASSI) and dual-coded snapshot imager (a.k.a. DCSI) are proposed. 

Correa et al. [23][47], Arguello et al. [24] and Rueda et al. [25] utilize the RGB colored sensor as a spatial-spectral 

modulator to achieve the specific dual coded (in spatial and spectral dimensions) compressive spectral imager 

(CCASSI). By combing the separable codes of all the spectral channels, the CCASSI can achieve more complex 

modulation than SD-CASSI and DD-CASSI. Similarly, Lin et al. [22] proposed a system that consists of two 

controllable modulators (e.g. digital mirror device) on both the spectral and spatial plane and introduce the dynamic 



modulation, i.e. changing the codes of the spectral and spatial planes during the exposure time, to enable more flexible 

modulation. Mathematically, the composited 3D spectral code 𝒞𝐶𝐶𝐴𝑆𝑆𝐼(𝑥, 𝑦, 𝜆)  of CCASSI and 𝒞𝐷𝐶𝑆𝐼(𝑥, 𝑦, 𝜆) of 

DCSI can be represented by the sum of a set of separable codes: 

 

 

Figure 5. Illustration of voxel sensing schemes of four types of undersampling multispectral cameras. From left 
to right: the sampling schemes of the PMVIS, SD-CASSI, DD-CASSI and 3D-CASSI systems. 
 

𝒞𝐶𝐶𝐴𝑆𝑆𝐼(𝑥, 𝑦, 𝜆) = ∑ 𝒞𝑐
𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑥, 𝑦)𝒞𝑐

𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙(𝜆)

𝑐∈{𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑠𝑒𝑡}

,

𝒞𝐷𝐶𝑆𝐼(𝑥, 𝑦, 𝜆) = ∑ 𝒞𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑥, 𝑦)

𝑡

𝒞𝑡
𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙(𝜆),

                                                            ⑹ 

where (𝑥, 𝑦) and 𝜆 are the spatial and spectral indices, 𝑐 and 𝑡 index the spectral channels and time slices respectively, 

𝒞𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and 𝒞𝑡

𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 are the spatial and spectral codes of the CASSI system for channel 𝑐, and 𝒞𝑡
𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and 𝒞𝑡

𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 

are the spatial and spectral codes of the DCSI system at time 𝑡. Since both the spectral data cube and the coding pattern 

are not sheared in this system, the measurement matrix is 

𝚽 = 𝚺𝑑𝑖𝑎𝑔(𝐂).                                                                                         ⑺ 

The ideal 3D-CASSI can in principle produce any 3D code, as shown in Figure 5. Both the CCASSI and DCSI 

are the approximate implementations of the ideal 3D-CASSI. According to Equation (7), there is no shearing matrix 

in the sensing matrix, which implies pixel-wise focus and non-restricted coding (as in Equation (6)) on both the spatial 

and spectral dimensions. Thus, 3D-CASSI provides a larger feasible code space than the SD-CASSI and DD-CASSI 

systems. 

 



 

Figure 6. Measurement snapshots of the PMVIS, SD-CASSI, DD-CASSI and 3D-CASSI systems respectively. 
 

All the coded aperture based systems capture images with the CCD sensor placed on the image plane. The sensing 

step corresponds to integrating the 3D spectral data cube along the spectral dimension, yielding snapshots that are 

blurred from dispersion (SD-CASSI) or not (DD-CASSI and 3D-CASSI) with modulated patterns. For the PMVIS 

system, the mask is placed on the image plane to obtain uniform sampling, and the sensor is located beyond the image 

plane by a certain distance to ensure that the dispersive spectral bands of the sampling points fill the sensor without 

overlapping one another. Figure 6 exhibits snapshot measurements on the sensor for the four systems.  

E. Sensing matrix and spectral sensing coherence: 

To compare the multispectral sensing ability of these under-sampling systems, we analyze their sampling 

efficiency. Consider the following theorem [2][34][35]: 

For a given signal f ∈ ℝn, suppose that its coefficient sequence x in the orthonormal basis 𝚿 is S-sparse, i.e., the 

coefficient sequence x has S non-zero elements. Then with m randomly-selected measurements in the 𝚽 (sensing 

matrix) domain, the signal f can be exactly reconstructed through L1 minimization with overwhelming probability if 

m ≥ 𝑐 μ2(𝚽, 𝚿) S log n ,                                                                               ⑻ 

where μ(𝚽, 𝚿) = √n max
1≤k,j≤n

|〈φk, ψj〉| is the coherence between the sensing matrix 𝚽 and sparse domain bases 𝚿, 

and 𝑐 is a known positive constant. 

According to this theorem, a smaller coherence 𝜇(𝚽, 𝚿)  indicates that fewer measurements are needed for 

complete reconstruction, and therefore the sensing system has higher sampling efficiency. In general, a randomly 

generated measurement matrix would be effective for most signals. However, for a specific task like multispectral 

imaging where signals exhibit commonalities that allow representation with a sparse basis or dictionary, the 

measurement matrix 𝚽 can be designed to achieve better performance.  

In this paper, we measure the quality of a sensing matrix as its spectral sensing coherence information with sparse 

domain bases: ℐ𝑚(𝚽, 𝚿) ≝ ‖𝐼 − 𝚿𝑇𝚽𝑇𝚽𝚿‖𝐹 , where 𝐼 is the identity matrix. Minimization of ℐ𝑚(𝚽, 𝚿) imposes 

the condition that the Gram matrix 𝚿𝑇𝚽𝑇𝚽𝚿 be as close as possible to the identity matrix, which provides a good 

sensing matrix as well. 

 



IV.   EVALUATION OF UNDER-SAMPLING SYSTEMS 

 

For the four types of under-sampling systems, we examine their sampling efficiency based on the spectral sensing 

coherence information of their sensing matrices, and then evaluate their reconstruction accuracy on a diverse 

multispectral database containing images of various scenes – including indoor scenes, outdoor scenes, various 

materials and different illuminations – from four online datasets [40][41][42][43]. A few example images are shown 

in Figure 7.   

A. Computation of spectral sensing coherence information and image reconstruction 

The spectral sensing coherence information is computed with respect to a domain basis in which the signals can 

be sparsely represented. From the multispectral image database, we learn two kinds of bases 𝚿 in which multispectral 

images have a sparse representation. The first is from Principal Components Analysis (PCA) [45], which is applied to 

derive an orthonormal bases. The second is from the K-SVD algorithm [39], which is used to obtain an over-complete 

dictionary. The bases represent the specific structural characteristics of the multispectral images and video frames, 

and thus are suitable for computing spectral sensing coherence information ℐ𝑚(𝚽, 𝚿) and analyzing the sampling 

efficiency of the under-sampling schemes for multispectral acquisition systems. 

 

Figure 7. Six example images from the multispectral database, including indoor and outdoor scenes, various materials, and 
different illumination. 10 of the 29 spectral channels (from 420nm to 700nm, at 10nm intervals) are shown. The 



corresponding RGB images are displayed in the top row.  

 

In computing the PCA bases and the over-complete dictionary, we use 100000 multispectral patches of size 10 ×

 10 × 29 pixels (horizontal × vertical × spectral) that are randomly sampled from the database. The size of each basis 

element is thus 10 × 10 × 29 as well. Since the PCA bases are orthonormal and complete, it has a size of exactly 2900. 

For K-SVD, 6200 atoms are learned as a sparse representation of the natural multispectral images. 

We also synthetically test the reconstruction accuracy of the four under-sampling multispectral imaging systems 

on the database images. The inputs of the four systems are generated by sampling the multispectral images according 

to the corresponding sensing matrices described in Section III. Image reconstruction is performed using a widely 

employed algorithm, namely the Alternating Direction Method of Multipliers (ADMM) [46], except for PMVIS which 

simply employs linear interpolation (as it cannot be solved by ADMM directly because of its special sampling scheme). 

ADMM is widely used in image reconstruction and has shown superior performance. It is worth noting that the choice 

of the algorithm may affect the reconstruction accuracy, but the ranking of the results does not change. 

In testing PMVIS, we use an image down-sampling rate of 0.3%, as is the case in the prototype camera [27]. 

Theoretically, in PMVIS systems, a minimal down-sampling rate of 1/Ω (where Ω is the number of spectral channels) 

is needed to prevent overlaps between the spectra of different samples. The current prototypes are not well calibrated, 

so the down-sampling rate may potentially be improved in the future. 

 

Table 1. The spectral sensing coherence information between the sensing matrices of different systems and the 
learned bases. 

 SD-CASSI DD-CASSI 3D-CASSI PMVIS 

K-SVD 0.7920 0.7787 0.7737 0.8148 

PCA 0.7048 0.6432 0.6663 0.7251 

 

Table 1 presents the spectral sensing coherence information values computed between the sensing matrices of the 

four types of the under-sampling systems and the three kinds of bases. Note that since Hybrid PMVIS [30][31] and 

Hybrid CASSI [32] each obtain two snapshots, they are omitted in this analysis for an even comparison. Multiple 

snapshot systems are discussed in Section V. For the coded aperture based systems, binary codes randomly generated 

by the Bernoulli distribution, with the same probability 𝑝(x=1) = 0.5, are applied.   

Specifically, the codes of SD-CASSI and DD-CASSI are derived by shifting and stacking the randomly generated 

2D patterns. As for 3D-CASSI, the code is generated directly in 3D space. Both the K-SVD and PCA bases are learned 

from the database. 



 

Figure 8. PSNR comparison for image reconstruction with the four types of under-sampling systems on a set of 
50 multispectral images. Crosses of different colors mark the average PSNR for the different methods. The PNSR 
value for each individual multispectral image is also plotted, as blue dots, to illustrate the statistical distribution 
of the reconstruction accuracy. Except for PMVIS in which linear interpolation is used for reconstruction, we 
use the Alternating Direction Method of Multipliers (ADMM) [46] to compute the reconstruction results. 

 

The 3D-CASSI system has the most complex modulation and achieves the best spectral sensing coherence 

information on the over-complete dictionary learned by the K-SVD algorithm. However, for the PCA bases, DD-

CASSI provides the best spectral sensing coherence information. For both of the bases, the coherences of DD-CASSI 

and 3D-CASSI are very close, which indicates comparable quality of their sensing matrices. It is shown in Figure 7 

that DD-CASSI and 3D-CASSI also perform comparably on hyperspectral image reconstruction accuracy, which is 

consistent with the theorem discussed in Section III.  

Aside from DD-CASSI and 3D-CASSI, the coherence values of the other systems have a consistent ranking on 

both the PCA and K-SVD bases, which suggests that the relative quality of sensing matrices is not greatly affected by 

the bases, if they represent the sparse structure of the data well. This is also indicated by the reconstruction results in 

Figure 8. 

 

 

Figure 9. Comparison of reconstructed results for the four under-sampling systems. All the results are shown 
at the 610nm channel. (PMVIS PSNR = 16.6845db, SD-CASSI PSNR = 18.0859db, DD-CASSI PSNR = 29.8178db, 
3D-CASSI PSNR = 32.5659db) 
 

 



The reconstruction performance of the four under-sampling systems is displayed for the 610nm channel of an 

example image in Figure 9. The result of PMVIS exhibits blocking artifacts due to its low sampling rate in the spatial 

domain. The results for the other three coded aperture systems are of much higher quality. 3D-CASSI produces 

particularly good results in this example. 

It is worth noting that the random code may not be optimal for specific data such as multispectral images, which 

exhibit certain characteristics and strong redundancy. In regard to this, the feasible space of coding patterns for the 

coded aperture based systems is constrained by the light paths of the systems. With a larger feasible domain, there is 

greater potential for a system to achieve higher performance. Since 3D-CASSI, whose coding space completely 

encompasses those of the other three systems, does not exhibit much superiority over the other systems in our 

experiments, we believe that a random code is far from optimal in the multispectral imaging scenario. 

B. Analysis of light throughput and system complexity 

 

Table 2. Typical parameters for the four types of under-sampling systems 
   SD-CASSI DD-CASSI 3D-CASSI PMVIS 

Light Throughput 0.5 0.5 0.25 
1

𝛺
 

Number of Optical Elements 6 9 8 6 

 

Besides the sensing matrix, the light throughput and calibration error also affect the reconstruction accuracy. For 

discussion of these factors and practical system complexity, we list the light throughput and the number of optical 

elements in Table 2. For the PMVIS system, its light throughput is determined by its down-sampling rate, which is 

the reciprocal of the number of spectral channels Ω. For the typical multispectral imaging scenario, with 30 or more 

spectral channels, the light throughput loss of PMVIS is relatively large. Both SD-CASSI and DD-CASSI have a light 

throughput of 0.5, while that of 3D-CASSI is 0.25 because of its two modulators. With regard to system complexity 

and calibration difficulty, PMVIS and SD-CASSI are relatively simple and easy to calibrate because of their smaller 

number of optical elements and simpler light paths. Particularly, PMVIS is much more robust to calibration errors 

(e.g. slight shifts or rotations of the coded aperture) because its reconstruction algorithm is based on simple 

interpolation, which makes the system highly practical. The number of optical elements also has a strong influence on 

calibration and light throughput, and thus it affects the signal-noise ratio of the captured multispectral images. 

Although PMVIS and SD-CASSI have lower reconstruction accuracy on synthetic data as shown in Figure 8, this gap 

is narrowed by taking their practical benefits into consideration. 



 

Figure 10. Noise tolerance curves of the four kinds of spectral imaging systems. (The image intensity is 
normalized to 0~1.) 
 

As shown in Figure 10, it is clear that when the sensing noise increases, the performance gap between DD-

CASSI/3D-CASSI and SD-CASSI/PMVIS decreases rapidly. The reconstruction results of all the systems are 

degraded with the increase of sensing noise. However, with greater system complexity there is more degradation in 

performance. Considering the high complexity of DD-CASSI and 3D-CASSI, which leads to lower light throughput 

and larger calibration errors, the advantages of the complex coded aperture systems may be counteracted by the effect 

of sensing noise. Thus, further investigation is needed for reducing the light path complexity of coded aperture based 

spectral imaging systems and improving the noisy tolerance of the reconstruction algorithms. 

 

 

 

Figure 11. Hybrid camera design for multiple snapshot measurements. 
 



V.   DISCUSSIONS AND FUTURE DIRECTIONS 

 

A. Video-rate Multispectral Cameras with Multiple Snapshots 

 

We have focused on multispectral video imagers with single snapshot measurements thus far, but there exist other 

systems [2][30][31][32][45] that acquire two or more snapshot measurements to recover the spectral information with 

higher accuracy while still at video rates. These systems can be also used for multispectral capture of dynamic scenes.  

 

Table 3. PSNR comparison of three multi-snapshot systems. 

Systems 
Hybrid PMVIS (+ extra camera) SD-CASSI 

(measure twice) 

Hybrid CASSI 

(+ extra camera) Simple Algorithm  Complex Algorithm 

PSNR (DB) 25.86 33.19 28.04 32.10 

 

 

Multiple snapshots have been acquired in two ways. One is by adding extra cameras into the optical path. Figure 

11 shows one design for such an implementation, where the incoming light rays are first directed along two separate 

paths by a beam splitter, essentially making two copies of the light rays, each with a lower light intensity. One of the 

paths enters the optical configuration of an under-sampling system (e.g. PMVIS or CASSI), while the other light path 

may lead to an RGB or grayscale camera to record a high spatial resolution image of the scene. This hybrid camera 

design has been implemented based on PMVIS [30][31] and CASSI [32][45]. We also conducted spectral 

reconstruction experiments using this hybrid design by adding another full spatial resolution image as part of the input 

(RGB for PMVIS, and grayscale for CASSI). As for the PMVIS system, two kinds of reconstruction algorithms, i.e., 

a simple bilateral propagation based method [30] and a more complex learning based method [49], are applied.  

The results in Table 3, which are derived by averaging the results on the aforementioned spectral image database, 

show that the reconstruction accuracy is increased by about 8DB and 5DB on average for PMVIS and CASSI, 

respectively. This tremendous gain in signal recovery demonstrates the effectiveness of a hybrid camera design that 

includes an additional basic sensor. In addition, the complex learning based algorithm achieves about 8DB 

improvement over the simple bilateral propagation method for the PMVIS system, which shows the great potential of 

improving existing reconstruction algorithms.  

The other method for acquiring extra snapshot measurements is to use high-frequency optical elements and 

sensors that allow multiple snapshots to be captured for each multispectral video frame. Spatial light modulators or 

digital micro-mirror devices operating at 120Hz or above can be used for this purpose in conjunction with high-speed 

camera sensors, all of which have become increasingly affordable in recent years. Systems based on this design have 

been successfully built for multiple snapshot multispectral video capture [2][29]. Significant gains in reconstruction 

accuracy (about 5DB) have been reported in comparison to the single snapshot CASSI system in [2]. As a result, in 

practice, either adding an extra sensor, filters or using an ultra-fast coded aperture, a tradeoff can be made between 

multispectral acquisition accuracy and system cost. 



B. Advanced Theory in Reconstruction from Under-sampled Signals 

The use of random projections in compressed measurements was originally motivated by the idea that many 

signals of interest may be represented sparsely in an orthonormal basis, such as the wavelet transform. However, 

sparsity represents only one class of signal model, and other models may lead to other forms of compressive 

measurement that may perform better than random projections. For example, it has been demonstrated that many 

signals of interest may be represented in terms of a union of low-dimensional linear subspaces  [35][37][44][48]. From 

a statistical or signal processing perspective, such a model may be represented as a Gaussian Mixture Model (GMM), 

in which the covariance matrix of each mixture component is low-rank [36][37][38]. Recent theory has shown that 

good measurement matrices correspond to projections that are aligned with the signal space [36][37]. There is already 

evidence to demonstrate that such a signal model, which may be learned based on the data [38], is well suited to the 

multispectral data of interest. This model will greatly facilitate the measurement design of novel multispectral video 

cameras. 

With the advances in signal processing theory and algorithms and the increasing demand for high-resolution 

multispectral images/videos, under-sampling schemes for multispectral image acquisition have become a hot topic in 

computational photography and signal processing. A number of under-sampling-based acquisition systems have been 

proposed, but there had been little analysis of their relative effectiveness. In this paper, we have examined existing 

multispectral video systems based on their sampling efficiency and optical performance, from a signal processing 

perspective. We introduced the spectral sensing coherence information of the sensing matrix and bases learned from 

multispectral data as a metric for comparing the sampling efficiency of different systems. From these analyses, readers 

may be inspired to design or develop better sampling schemes for multispectral sensing. 
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