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Abstract:  Ghost imaging has rapidly developed for about two decades
and attracted wide attention from different research fields. However, the
practical applications of ghost imaging are still largely limited, by its low
reconstruction quality and large required measurements. Inspired by the
fact that the natural image patches usually exhibit simple structures, and
these structures share common primitives, we propose a patch-primitive
driven reconstruction approach to raise the quality of ghost imaging.
Specifically, we resort to a statistical learning strategy by representing each
image patch with sparse coefficients upon an over-complete dictionary.
The dictionary is composed of various primitives learned from a large
number of image patches from a natural image database. By introducing
a linear mapping between non-overlapping image patches and the whole
image, we incorporate the above local prior into the convex optimization
framework of compressive ghost imaging. Experiments demonstrate that
our method could obtain better reconstruction from the same amount of
measurements, and thus reduce the number of requisite measurements for
achieving satisfying imaging quality.
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OCIS codes: (110.1650) Coherence imaging; (110.1758) Computational imaging; (150.1135)
Algorithm.
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1. Introduction

Ghost imaging (GI) is a novel imaging technique which non-locally records a scene, and has
drawn wide attention over the last two decades. In the scheme of GI, two correlated beams travel
along different light paths, one light beam illuminates the scene and is collected by a bucket
detector, the other one is directly recorded by a spatially-resolved detector. By correlating the



outputs of these two light paths, one can reconstruct the spatially-resolved image of the scene.
The “ghost” emphasizes that only a non-spatially-resolved detector is needed to detect the light
interacting with the target scene.

GI has gone through three main development stages in terms of the adopted light sources:
quantum entangled photons [1], classical thermal light [2—4], and programmable illumination-
s [5,6]. From quantum to classical to computational, GI is becoming more and more flexible,
and has already been put into various practical applications, such as 3D reconstruction [7],
fluorescence imaging [8], optical encryption [9, 10], remote sensing [11], looking through at-
mospheric turbulence [12, 13], object tracking [14, 15], etc. Among the three, computational
ghost imaging successfully transfers the complexity of ghost imaging from the experimental
apparatus to computation, and makes it possible to enhance and extend GI with the aid of com-
putational resources.

The reconstruction algorithms of ghost imaging mainly fall into two types: second-order
(or higher-order) correlation and compressive sensing. The former one obtains the target im-
age through calculating the second-order (or higher-order) correlations of the bucket detector
measurements and the illumination patterns. This method suffers from low reconstruction quali-
ty due to limited measurements, although some variants have been proposed to improve the per-
formance [16-19]. Differently, the latter one, compressive ghost imaging (CGI), reconstructs
the ghost image based on compressive sensing, which has also been successfully used in other
applications, such as phase retrieval [20-22]. Through exploiting the redundancy in the struc-
ture of natural images [23]. CGI enables ghost imaging from sub-Nyquist measurements and
largely reduces the acquisition time. Besides, adaptive methods have been proposed to further
decrease the requisite measurements [24,25].

The higher reconstruction quality of CGI is attributed to the utilization of pixel-wise prior
knowledge (e.g., minimizing the total variation to enforce the local smoothness) or global prior
features (e.g., forcing sparsity of DCT coefficients to ensure the dominance of low frequen-
cies) of natural images. Other than the above priors, there also exist strong priors in image
patches. Statistically, the image patches are of low dimension and exhibit simple structures.
These structures can be decomposed into several primitives, and different structures may share
some primitives. So far, the patch prior has been extensively studied and successfully utilized
to achieve state-of-the-art performances in various computer vision tasks [26-28].

In this paper, we propose to unify the patch prior together with the pixel or global prior into
the CGI reconstruction framework. As far as we know, this is the first time to utilizing patch pri-
or in natural images for ghost imaging and it is nontrivial, because the collected measurements
from the bucket detector encode the information of the holistic scene. Our studies demonstrate
that, incorporating the patch prior provides great help to improve the reconstruction quality
of the non-spatially resolved imaging technique. The remainder of the paper is organized as
follows: Section 2 introduces our modeling and derivation. Section 3 demonstrates the effec-
tiveness of our method on both synthetic and real captured data. Finally, Section 4 makes further
discussions and summarizes this work.

2. Method

In general, we introduce a linear indexing operator to map each patch to the whole image and
vice versa (as shown in Fig. 1), then the constraint defined locally and globally can be integrated
together for an intensive utilization of natural image redundancy. As for the pixel-wise or glob-
al prior, we can either minimize the total variation or enforce the sparsity of DCT coefficients.
As for the patch prior, we represent the image patches by a composition of several primitives,
which depict the elementary local structures of natural images, and enforce the sparsity of the
representation coefficients. Since both the total variation minimization and coefficient sparse-
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Fig. 1. Schemetic illustration of our model. The upper part (framed with dashed box) de-
picts the learning process of patch primitive set. For a given image, each patch p;; can
be extracted from the image x by R;j, and represented with sparse coefficients s;; over
the learned over-complete patch primitive set. Inversely, with the patch-to-image mapping
{RITJ} we could reconstruct the whole image using the over-complete patch primitive set
and the corresponding sparsity coefficients {s;;}.

ness (either of local patch or the holistic image) can be achieved by minimizing a /| norm, we
can unify different constraints within a convex optimization framework to reconstruct the target
scene.

The image patches represent local regions of a natural image. Usually, the patches are de-
fined in terms of fixed-size blocks (e.g. k x k pixels), which is much smaller than the original
image size, as illustrated in the upper part of Fig. 1. Statistical studies suggests that natural
images contain characteristic structures that set them apart from random images (i.e. the pixel
intensities are random) [29]. Therefore, characterizing the structures of natural images, and for-
mulating the properties effectively may lend insights into the recovery of natural images [30].
Researches have shown that, one can apply the sparse coding algorithm to a large image patch
set to learn a primitive set indicating the basic structures of natural image patches [30,31], and
each patch can be represented by sparse linear combination of these primitives. The subfigure
framed with dashed box in Fig. 1 gives an schematic illustration of the process of learning the
patch primitive set.

Concretely, given a large number of natural image patches {p',...,p"} € R¥* which are
randomly cropped from natural images databases as input, the goal of sparse coding is to find
the patch primitive set {d',...,d"} € R®** and the sparse vectors of weight {s',....sV} ¢ RV*1,
such that for each patch p* ~ Y.V_, s“d”, where s* denotes the vth element of s*, i.e. the represen-
tation coefficient upon patch primitive d” of patch p“. The sparse coding problem is formulated
as:

U |4 U
argmin )" [[p* — ) sid"|[3+B Y [Is“||r- ()

{s}{d"} u=1 v=1 u=1
Here the first term measures how well the patch primitives represent the image patches, and
the second term adopts the L1 norm to enforce the sparsity of the representation coefficients.
The parameter f3 is a positive constant balancing the importance of two terms. We optimize the



objective function over a large database of natural image patches to obtain an over-complete
patch primitive set, which is applicable to sparsely represent various natural image patches.
Note that the patch primitive set is usually over-complete (i.e. V > k). This point has been
emphasized in [32], which states that the local structures described by the primitives may occur
at continuum positions and scales, and over-complete patch primitives could allow for smooth
interpolation along this continuum. In other words, over-completeness results in representation
accuracy and coefficients sparseness tolerating small translations and scaling of local structures,
and thus ensures high flexibility to diverse target images. Overall, the over-completeness of the
dictionary ensures the coefficient sparsity an effective prior for general image patches.

We also visualize the learned patch primitive set in Fig. 1, with each entry representing a
primitive. Further looking into the details of the primitive set, we could find that the set of
primitives describe visually elementary features, such as oriented and translated edges, curves,
corners, blobs etc. For each patch from the target scene, we can represent it with a small number
out of the whole primitive set, as plotted in Fig. 1. This patch prior has already been successfully
incorporated to improve the performance of the classical computer vision tasks, such as denois-
ing [26], superresolution [27] and deblurring [28], etc. In this paper, we propose to incorporate
this patch prior into the CGI to further enhance its performance.

To formulate the problem more concisely in matrix form, we let D € R¥*V denote the over-
complete primitive set (each column as a vectorized form of a patch primitive), and term it as a
over-complete dictionary. Given such a dictionary D, each patch could be represented as

p =Ds, ()

in whichp € R¥**1 denotes the vectorized image patch, and s is the representation coefficient of
p- We introduce the over-complete dictionary and the reconstruction coefficients into the CGI
reconstruction as in [26]:

R;jx = pij, 3)
where x denotes the whole image, R;;(x) is the linear image-to-patch mapping, which extracts
the patch with its top left pixel locating at (i, j) in image x. Correspondingly, we denote RiTj(pi i)
as the inverse mapping, i.e. the patch-to-image operator, and the image x can be obtained by
tiling all the non-overlapping patches, i.e.

x= Y RY(pi)). @
ij

Based on above notations, we can introduce the patch prior into the reconstruction algorithm
of conventional CGI (CCGI):

argmin ||‘PXH1+7LZHS,-]~||1

Sij ij
st lox—ylE<e,
X = ZREPIP
ij
pij = Dsj. ®)

The first objective term is used to impose the image prior defined over the whole image (e.g,
enforcing a small total variation or sparse DCT coefficients), with ¥ being the transform ma-
trix applied on the whole image. The second term imposes the local prior that each image patch
is of sparse representation coefficients upon the over-complete dictionary. We use a weighting
factor A to balance these two objective terms. The first inequality constraint describes the data



fidelity. Here @ is the measurement matrix, with each row denoting a vectorized illumination
pattern, y is the measurements, and variable € is introduced for robustness to the measurement
noise. The second constraint builds a mapping between the image patches and the whole image,
and facilitates formulating local and global priors in a unified framework. The third constraint
comes from the representation of image patches defined in Eq. (2). Comparatively, CCGI [23]
recovers ghost images through minimizing the first objective term under the first inequality con-
straint. Since utilizing only the whole image prior is prone to smoothing out the thin structures
in the target image, we introduce patch prior (the second objective term and two additional
equality constraints) to preserve the local details better. In this paper, we name the extended
optimization in Eq. (5) primitive-driven CGI (PCGI).
Removing the intermediate variables x and p;; in Eq. (5), we could get

argmin | ¥Y R/ (Dsi;)|[1 +A X |Isijl]1
i i

Sij

st.  |[|[@LR](Ds;;) -yl <e. (6)
ij
We could rewrite the problem in Eq. (6) in a similar way to [33] as

: u
argmin %} R (Dsij)|[1 +4 ) [lsijlli + 5 [|@ L R7;(Dsij) - y13, (7
L t

Sij ij

where U is the penalty parameter of the measurement noise.
To solve the problem, we denote m,n as the number of patches along two dimensions of the
image and i, j as the corresponding indices, and then reformulate the problem as

argp1in||‘PRTl~)§H1+l||§||1+%||<I>RT]3§—y||§. (8)
S

Here RT = bikdiag({R;;}), DT = blkdiag({D;;|Vij D;; = D}) are two block diagonal matrices,
with blkdiag(-) denoting diagonal concatenation of the input entries; § = [s]},...,s],]7 is a

vector composed by concatenating the reconstruction coefficients of all m x n image patches.
By simple variable substitution, Eq. (8) could be further rewritten into

argmin  [|wl}; +A[[8][i + 5 || ®R" D5 — |3
S
st.  w=WYR'Ds. 9)

Eq. (9) falls into a typical convex optimization, and we resort to the alternating direction method
of multipliers algorithm [34] to solve the model. The final reconstructed image could be ob-
tained from the optimum §* according to Eq. (4).

3. Experiments on simulation data

To demonstrate the performance of our method, we conduct a series of numerical simulation-
s upon natural images. In implementation, the image size in this experiment are all 64 x 64
pixels. The measurements are generated by calculating their inner products with different ran-
dom binary patterns. We set the patch size to be 8 x 8 pixels empirically. The over-complete
dictionary is trained from 300 natural images from the Berkeley Segmentation Data Set 300
(BSDS300) [35]. For each natural image, we choose 250 patches at randomly chosen positions,
and in sum we use 750,000 patches. Each patch is normalized to zero mean before provided to
the efficient sparse coding algorithm [31]. As shown in Fig. 1, there are in all 256 primitives. As
discussed before, the number of primitives should be bigger than the dimension of the image



ground truth TGl DGl CCGI-TV PCGI-TV CCGI-DCT PCGI-DCT

Fig. 2. Performance comparison on simulated data. The 1st column displays the ground
truth images. The 2nd and the 3rd column is respectively the reconstruction results of TGI
and DGI. The 4nd vs. 5rd, and 6th vs. 7th columns compare the reconstruction results
of CCGI and PCGI. (a) Images without periodic textures: letters ‘GI’ (SSR=0.08), ‘Leaf’
(SSR=0.10), ‘Eight-triagrams’ (SSR= 0.35), ‘Lena’ (SSR= 0.35), ‘Flower’ (SSR= 0.25).
(b) Images with periodic textures: ‘Brickwall’ (SSR= 0.45), ‘Wickerwork’ (SSR= 0.5),
‘Fishscale’ (SSR= 0.45).



patch to ensure the over-completeness, i.e., the sparsity of the patches’ reconstruction coeffi-
cients. Although theoretically a larger primitive set leads to better reconstruction, adopting too
large a primitive set would pose heavy computational load on the reconstruction algorithm.
To balance the over-completeness and computation load, we set the primitive set size as 256,
the same as [26], which was demonstrated empirically to achieve good performance for general
natural images. Accounting for the de-mean normalization of the training patches, we add a DC
patch (all the entries of the 8 x 8 primitive is set to be 1) to the trained dictionary. By vectorizing
each primitive as a column vector, we could get the over-complete dictionary D (64 x 257).

For a better evaluation of the advantages of introducing the patch prior, we compare the
reconstruction results with and without it. Without loss of generalization, we use two widely
adopted Ws—gradient operator and 2D-DCT domain transform matrix, as in [11, 23,24]. To
express compactly, we denote two transform matrices as ¥;, and W¥,, respectively. As for
the two parameters in Eq. (9), we found that experimentally, the algorithm is insensitive to
their values as long as they fall into an appropriate but reasonably wide range. Throughout the
experiments, we use the same parameter setting: A = 0.1, f = 0.4 and ¢ = 1000. Besides, for a
comprehensive evaluation of our approach, other than CCGI, we also compare our method with
the correlation-based computational GI methods, including traditional GI (TGI) [6], differential
GI (DGI) [16], normalized GI (NGI) [17] and iterative GI (IGI) [18]. Considering that our
experiments were conducted with the sub-Nyquist sampling ratio (SSR), i.e, the number of
illumination patterns is smaller than the resolution of the target image, in which case NGI and
IGI exhibit similar performance to DGI (slightly better than TGI), we choose to show only the
results of TGI and DGI here.

025 035
== TGl == CCGITV =#= CCGITV =+= TG| == CCGI:TV == CCGITV
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Fig. 3. Quantitative performance comparison with respect to SSRs among six different
algorithms referred in Fig. 2. (a) ‘Lena’, (b) “Wickerwork’.

To test the performance of our approach at different SSRs, for each scene we reconstruct
the images with SSR ranging from 0.1 to 1 with an interval of 0.1. Here we choose to display
the reconstruction results at the SSR with the most prominent performance difference in Fig. 2.
Comparatively, CS-based methods (i.e. PCGI-TV, PCGI-DCT, CCGI-TV, CCGI-DCT) perform
much better than the correlation-based methods (i.e. TGI, DGI). The suffixes “TV’ and ‘DCT’
respectively denotes using ¥, and ¥, as the transform matrix ¥ in Eq. (5). The large dif-
ference in reconstruction performance comes from their different reconstruction mechanisms:
The correlation-based methods rely only on the statistical properties of the cross-correlation
matrix of the illumination patterns, thus requires large number of measurements, usually more
than the size of the target image. On the contrary, CS-based methods incorporate priors addi-
tionally and thus are of good quality even at sub-Nyquist ratio. Comparing PCGI methods (i.e.



PCGI-TV, PCGI-DCT) with CCGI methods (i.e. CCGI-TV, CCGI-DCT), we could find that the
latter demonstrates better reconstruction, especially in the areas with edges (e.g. the boundary
of the letters ‘GI’, the blade of ‘Leaf’, the hat brim of ‘Lena’, the petal of the ‘Flower’, the
gaps among the fish sales), lines (e.g. the petiole of the ‘Leaf’, the lines around the ‘Eight-
trigrams’, the thin grooves of the ‘Brickwall’, the wicker of the “Wickerwork’), and blobs (e.g.
the dots in the ‘Eight-trigrams’, the stigma of the ‘Flower’). The performance gain of PCGI
is mainly attributed to the patch primitive prior. Observing the learned patch primitive set in
Fig. 1, we can find that edges, lines and small blobs are typical patch primitives, thus image
patches exhibiting such structures are more likely to be composed by a sparse combination
of the learned primitives. Therefore, introducing patch prior would improve the performance
by enhancing the high frequencies that tend to be smoothed out by imposing prior defined on
the whole image—minimizing total variation (CCGI-TV) or favouring the dominance of low
frequencies (CCGI-DCT).

Besides, we can find experimentally that the performances at different settings are slightly
different for the images in Figs. 2(a) and 2(b). For images without periodic textures in Fig. 2(a),
the reconstruction using total variation prior exhibits higher quality than using DCT prior. The
advantage of introducing patch prior is more distinct when using Wg4.,. On the contrary, in
Fig. 2(b), the algorithm with DCT prior works better in the cases with rich periodic textures.
The patch prior exhibits a more marked improvement for CGI with total variation prior. The
varying applicability to different cases can help choosing different scene specific algorithms.

For quantitative evaluation, we adopt mean square error (MSE) as the evaluation metric and
compare the reconstruction with respect to SSR among four different algorithms. In Figs. 3
(a) and 3(b), we respectively plot the MSE comparison of ’Lena’ and *Wickerwork’, as two
representative examples for the images in Figs. 2(a) and 2(b). As the number of measurements is
far from being sufficient for decent correlation-based reconstruction, the performances of both
TGI and DGI are apparently inferior to those of CCGI and PCGI. Further comparing CCGI
and PCGI, one can clearly see that reconstruction of PCGI is better than CCGI, especially
at low SSRs from 0.2 to 0.5. This implies that our method can obtain the same reconstruction
quality with much less measurements. As in Fig. 3(a), to retrieve an image with the same quality
(MSE= 0.05), our method could reduce the measurements by 5.7% and 22% for ¥}, and ¥,
transform, respectively. Similarly, in Fig. 3(b), for image *Wickerwork’, with abundant periodic
texture, our method can reduce 5.3% and 12.5% measurements to achieve reconstruction with
MSE= 0.1. In all, these results demonstrate the contribution of our approach in enhancing the
quality, and thus reducing the requisite acquisition time of CGI.

Considering the inevitable sensor noise in an imaging system, we further test the reconstruc-
tion performance at varying noise levels. We simulate imaging noise by superimposing additive
Gausssian white noise with the signal to noise ratio (SNR) from 10dB to 70dB. In this exper-
iment, we set SSR to be 0.25 and provide the reconstruction results of six different methods
with MSE as the evaluation metric. We choose to show the comparison result of ‘Lena’ and
‘Wickerwork’ in Fig. 2. As plotted in Fig. 4, the reconstruction quality of all methods increases
monotonously as the noise level decreases and become stable when the signal to noise is high-
er than 40dB. As can be seen, our method performs much better than the other methods. The
comparison between using different Ws is consistent with the comparison discussed above.

4. Experiments on real captured data

Then, we experimentally demonstrate our method on the data captured by the prototype system.
The scheme of our experimental setup for computational GI is exhibited in Fig. 5. The illumi-
nation module is built by hacking a commercial projector. Firstly, the light emitted from the
halogen lamp is successively converged by a condenser lens, collimated by an optical integrator
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Fig. 4. Comparison of robustness to sensor noise among six algorithms. (a) ‘Lena’, (b)
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Fig. 5. The schematic diagram of CGI. Light source: high pressure Mercury lamp (Philips,
200w). DMD: Texas Instrument DLP ® Discovery™4100, .7XGA. Scene: a transmissive
film (34mmx34mm). Detector: Thorlabs DET100 Silicon photodiode (integration time:
0.625ns).

and then adjusted by a shaping lens. Then, the light is modulated by the digital micro-mirror de-
vice (DMD) to generate random patterned illuminations. After beam expansion with a projector
lens, the patterned illumination interacts with the scene and the outgoing photons are collected
by a bucket detector after going through a converging lens. The measurements are collected by
sampling the outputs of the detector using a 14bit acquisition board ART PCI8514, which per-
forms analog-to-digital (AD) signal conversion and then transmits the data to the computer for
follow-up reconstruction. The illumination pattern on the DMD is controlled by the computer,
and the target image is retrieved from the illumination patterns and the bucket measurements.

In our CGI setup, there are several factors that might influence the reconstruction perfor-
mance. We investigate the influences from instrument specifications and adopt corresponding
strategies to avoid the performance degeneration.

At the illumination side, since we use binary (i.e., {0, 1}) patterns, there is no quantization er-
ror during the DMD modulation. The AD at the acquisition board would introduce quantization
error. Here we adopt a 14-bit digitalization depth, and the fluctuation range of the single pixel
detector is 0-5000mV, so the resolution of AD is 0.3053mV. In our experiments, the measure-



ment range among the patterns are respectively 8254+67.6425mV and 1103+108.2650mV with
respect to the letters ‘GHOST IMAGE’ and ‘Ghost’. So the quantization error occurs at the ac-
quisition board can also be ignored.

Theoretically, one can get stair shaped measurement transition, but the elapse caused by
pattern transition of the illumination and integration of the detector would smooth the transition
edges. In our experiment, the illumination frequency is set to be 100Hz. We set the acquisition
frequency at 100 times of the illumination, i.e., 10000Hz. So the sampling period 100us and
there are 100 measurements for each pattern. Because the integration time is 0.625ns and the
DMD transition takes 12us, we discarded 5 points in the beginning and ending of the 100
measurements to avoid the influence of the elapse caused by either illumination or detector. In
implementation, we take average over the 90 left samples as the measurement for each pattern.

The sampling frequency can also influence the reconstruction performance, so we spe-
cially compare the performances at different sampling frequencies (ranging from 1000Hz to
100000Hz). As in Fig. 6, as the sampling frequency increases, the fidelity of reconstruction
improves. This trend is reasonable, since denser sampling would suppress the sensor noise bet-
ter with respect to each pattern. Similar to the trend on simulated data, display in Fig. 5, the
reconstruction quality stop improving when the sampling frequency exceeds 10000Hz. This
is mainly due to that our method is robust to small noise, thus the reconstruction result will
not be distinctly improved by further raising the SNR of the measurements. Therefore, in our
experiment, we set the sampling frequency to be 10000Hz.
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Fig. 6. The reconstructions of ‘GHOST IMAGE’ and ‘Ghost’ from the measurements of
different sampling frequencies.

In our experiments, we reconstruct the image ‘Ghost’ and the uppercase alphabet ‘GHOST
IMAGE’. The spatial resolution is 64 x 64 pixels. We collect 614 measurements (SSR= 0.15)
for each image. As can been seen in Fig. 7, the comparison between our approach and conven-
tional CGI exhibit a similar trend with that on simulation. Although the reconstructions are a
little bit corrupted due to the noise during sampling, by introducing the patch prior, our method
could still show its superiority in reconstructing the local details of the image. For example, we
can obtain sharper edges of the alphabet ‘GHOST IMAGE’ and cleaner outline of the ‘Ghost’.



Here we make further effort upon quantitative performance comparison. Although we have
the image of the target scene used in film printing, taking the film image as ground truth suffers
from misalignment with the reconstruction. Hence, we choose to use the high quality recon-
struction result of PCGI-TV with a large SSR (i.e. SSR= 0.5) as a pesudo-ground truth (PGT),
as shown in the first column of Fig. 7. Here we still use MSE as the evaluation metric. Corre-
sponding to the reconstructed images from 2nd to 7th column in Fig. 7, the MSEs of ‘GHOST
IMAGE’ are 0.460, 0.447, 0.091, 0.068, 0.149, 0.086, and those of ‘Ghost’” are 0.464, 0.441,
0.078, 0.054, 0.177, 0.089. The performance ranking is consistent to the visual comparison,
and the effectiveness of the proposed approach is further validated.

PGT TGI DGI CCGI-TV PCGI-TV CCGI-DCT PCGI-DCT

Fig. 7. The reconstructions from the measurements captured by our prototype. The Ist
column displays the PGT, the 2nd and 3rd columns show results of TGI and DGI, and the
4th to 7th column shows the reconstruction by CCGI-TV, PCGI-TV, CCGI-DCT, PCGI-
DCT, respectively.

5. Conclusions and discussions

In summary, this paper proposes to introduce the patch prior of natural images into the com-
putational ghost imaging framework. Experiments show that our approach largely raises the
reconstruction quality of ghost imaging. The superiority to conventional CGI is mainly attribut-
ed to utilizing the patch prior, which enforces each patch to be a sparse linear combination of
primitives learned from a natural image database.

Mathematically, the dimension of the optimization variable increases after introducing the
patch primitives, so the proposed approach is of higher computational complexity than con-
ventional CGI. Fortunately, the related heavy calculations, such as the matrix inversion to get
greedy solution at each iteration, is scene independent and can be calculated off-line before col-
lecting measurements and conducting reconstruction. Therefore, introducing patch prior does
not lead heavy computation and can serve as a feasible solution for improving quality of ghost
imaging.

One promising extension of our method is to perform adaptive dictionary learning to take
advantage of the high flexibility of sparse coding, i.e. if we know the type of the target scene,
we could choose the same type of training image patches to learn a specific over-complete dic-
tionary for better reconstruction [36]. Convolutional sparse model [37,38] can also be utilized
to incorporate the patch prior into the framework of CGI and has the potential of higher perfor-
mance. Besides, we also plan to introduce self similarity existing in the target image to reduce
the required measurements further. Then, dynamic ghost imaging tends to be feasible and will
broaden the practical applications of CGI.
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