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Abstract: High-end lenses are usually composed of many optical ele-
ments to compensate various optical aberrations, e.g. geometric distortion,
monochromatic and chromatic aberrations. The resulting complexity and
machining accuracy requirements make high-end lenses too expensive,
heavy, and fragile for day-to-day photography. To address this problem,
we devised an optical computing approach to touch-up the low quality
photos produced by simpler lenses. We propose a setup consisting of an
easily accessible display and the original camera in order to perform optical
aberration correction with a deconvolution framework. The equivalence
of the degeneration model and the lens’s optical computing turns the
traditional blind deconvolution algorithm into its non-blind counterpart and
promises robust performance. A prototype system is implemented to verify
the feasibility of the proposed method, and a series of experiments on both
synthetic and captured images are applied to demonstrate effectiveness and
performance.
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Fig. 1. Prototype and results for image enhancement. (a) The setup. (b) Low-quality
input image. (c) Aberration-compensated result.

1. Introduction

Optical aberration is the deviation of real lenses with respect to the ideal imaging model,
e.g. paraxial approximation, and can degrade image quality significantly. Although multiple
lenses with different materials, curvatures, and interval distances are used to construct high-
end aberration-corrected lens systems [1], optical aberrations in lens-based imaging systems
are inevitable in practice. To obtain high-quality images, some researchers have proposed com-
pensating for optical aberration by using adaptive optics during acquisition [2, 3, 4, 5]. Re-
cently, Wang et al.[6] presented an adaptive optics method using direct wavefront sensing and
descanned signal collection and measurement to manage spatially varying aberration of large
volumes of data with a high refresh rate. Alternately, there is another type of method [7, 8, 9]
where computational restoration is performed after data capture. Moreover, Vettenburg and
Harvey [10] proposed a novel holistic design method to combine an optical acquisition sys-
tem with post-processing in order to remove aberration effects in wide-field reflective cameras.
This paper falls into the post-processing category, which requires less expertise and materials
of wider availability.

Whether adopting adaptive-optics-based or post-processing methods, we need the character-
istic data of the lens’s aberration, i.e. the point spread functions (PSFs), beforehand. To derive
the aberration information, researchers have proposed several kinds of methods, e.g. phase
diversity retrieval [11, 12] and calibration [7, 9, 13, 14]. All these aberration calibration or es-
timation methods require a complex procedure or some special devices, such as checker board
scheme, point light sources, etc. Without assistance from specific devices, Schuler et al.[15]
assumed locally uniform aberrations and adopted blind deconvolution to estimate lens aberra-
tions. This method eliminates the complex calibration procedure, but its robustness and perfor-
mance can deteriorate in the case of serious aberrations. In sum, accurately obtaining the PSF
of the lens is of vital importance but quite challenging.

Given the aberration data, one can use non-blind deconvolution to restore the latent image
from a low-quality source. Firstly, the deconvolution needs to fit the convolution degeneration
model iteratively to search for an optimal solution. Since lens aberration is often complex and
spatially varying, the convolution must be conducted pixel-wise and is quite time consuming.
Secondly, deconvolution is intrinsically ill-posed and regularizer terms defined from natural
image statistics must be introduced to suppress unpleasant artifacts. Most of these methods
impose sparsity constraints on the image gradients, e.g. total variation [16], wavelet coeffi-
cients [17, 18, 19, 20, 21], a hyper-Laplacian regularizer [22, 23], and other algebraic func-
tions [24, 25]. Apart from spatial constraints, Joshi et al.[26] and Heide et al.[7] have also used
color priority for regularization with impressive results. Alternately, Zoran and Weiss [27] use
a patch-based learning model to regularize the restoration results. Still, the high complexity and
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non-uniformity of lens PSFs make deconvolution extremely time-consuming.
Optical computing is an effective option for addressing the high complexity of computational

lens-aberration compensation by making good use of the high speed and parallelism of light
transport. Although its advantages in accelerating general computations [28, 29, 30, 31, 32, 33]
(e.g., matrix multiplication, Fourier transformation, and matrix decomposition) have been over-
shadowed by the rapid advance of processor power, light-based computation is gaining mo-
mentum and has made considerable progress in certain areas. For example, O’Tool and Kutu-
lakos [34] used a projector–camera system to compute light transport matrices, while Lefebvre
et al.[35] and Yu et al.[36] used optical computing for pattern recognition. We refer readers to
[37, 38] for a survey of this field.

With the aim of improving the image quality of low-end lenses simply and effectively, we
propose a novel ”touch-up” approach to address lens aberration via optical computing. Under
the general framework of deconvolution, we use a display–camera system to perform calcula-
tions optically, as shown in Fig. 1(a). The convolution with ground truth PSF is conducted by
capturing a displayed image using the original lens, and thus the deconvolution steps are im-
plemented by performing a series of display–capture procedures. Since the priors expressed by
a linear system can be easily incorporated into our optical computing framework, and without
loss of generality, we implement the widely used sparse priors in the wavelet domain to validate
our approach. Here the display–capture operation accurately simulates the degeneration model
and eliminates the effects of PSF estimation error, so the proposed system achieves satisfactory
performance, as shown in Fig. 1(b) and Fig. 1(c).

The proposed system is advantageous over previous methods in at least three ways. Firstly,
the necessary devices are widely accessible and all the system calibrations and computing pro-
cess are automatic, so our approach is easily implemented and offers a user-friendly interface.
Secondly, using light transportation via the original lens to simulate the degeneration model,
instead of convolving with the PSF-calibration or estimation results, is highly robust and shows
promising performance. Thirdly, thanks to the efficiency of optical computation, we can restore
a high-quality image in a matter of seconds. In addition, our approach provides a general op-
tical computing framework for restoring a high-quality image from a low-quality input, and is
applicable to arbitrary camera lenses.

Technically, the proposed method contributes mainly by the following three points:
• Formulation of the key modules in algorithms for lens aberration compensation into for-

ward and backward convolution;
• Transformation of the backward convolution flexibly into a forward one, which can easily

be implemented optically;
• Construction of a user-friendly prototype to verify the effectiveness of the proposed

method.

2. Optical computing for aberration removal

Ignoring the out-of-focus effect, the projective model of a lens-based imaging system can be
represented by a linear equation

B(i, j) = ∑
m,n

L(m,n)K(i, j,m,n)+N(i, j), (1)

where B and L are the observed image and the latent image, respectively, (i, j) and (m,n)
are the indices of B and L, respectively, K is the optical transfer function, and N is additive
noise that is assumed to be Gaussian. Ideally, the optical transfer function K should be the unit
impulse function, i.e., the imaging system accurately records the scene and the observed image
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Fig. 2. Diagram for calculating the gradient gd in Eq. 7. We use red and blue outlines
to highlight two types of convolutions, i.e. ∑m,n K(i, j,m,n)(·) and ∑i, j K(i, j,m,n)(·), re-
spectively.

B exactly equals L. However, in real cases, because of optical aberrations, the optical transfer
function becomes a low-pass filter and it projects a single pixel in L onto a set of pixels in B.
Given a specific position (m0,n0) in L, its projection in B, i.e. K(x,y,m0,n0), is also known as
the PSF or blur kernel of L(m0,n0). Usually the blur kernel caused by lens aberration is position
dependent (i.e., spatially varying).

Assuming the observed image B and optical transfer function K are both known, the latent
image can be derived by minimizing the following data fidelity term

Ed = ∑
i, j

(
∑
m,n

L(m,n)K(i, j,m,n)−B(i, j)

)2

, (2)

which forces the synthetic record from the reconstructed latent image and optical transfer func-
tion to remain similar to the true image B. To suppress artifacts in the reconstructed image
caused by lost high frequencies, many algorithms [17, 18, 19, 20, 21] based on wavelet domain
sparse priors have been proposed. In this paper, the widely used wavelet term is applied for
regularization because of its simplicity and effectiveness,

Ew(L) = ||W (L)||1, (3)

with W (·) being the wavelet decomposition function, and the ’Symlets 8’ wavelet is used here.
Combining Eqs. 2 and 3, we get the final cost function

E = Ed +λEw, (4)

with the coefficient λ balancing constraints from the fidelity term Ed and the regularization
term Ew.

To minimize Eq. 4, we can apply the fast iterative shrinkage/threshold (IST) algorithm [17],
which iteratively performs the following two steps after initialization L0 = B:
(i) Updates the image by descending gradient

Lt
g(i, j) = Lt(i, j)− τgd(i, j); (5)

(ii) Denoises the recovered image in the wavelet domain

Lt+1(i, j) = Tλτ/2(Lt
g(i, j)). (6)
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Fig. 3. Optical computing for convolution modules. (a) Forward convolution—
∑m,n K(i, j,m,n)(·). (b) Backward convolution—∑i, j K(i, j,m,n)(·).

Here t is the iteration index, τ is the updating step size, gd is the gradient of Eq. 2, and Tλτ/2(·)
is the thresholding operation with λτ/2 being the truncation threshold. In this paper, τ is set to
0.8; λ needs to be tuned according to the noise level and will be discussed with the quantitative
experiment. The gradient gd is calculated by

gd(m,n) = 2∑
i, j

K(i, j,m,n)∑
m,n

K(i, j,m,n)L(m,n)−2∑
i, j

K(i, j,m,n)B(i, j). (7)

One can see that the calculation includes two main convolution modules: summation over in-
dices (m,n) and (i, j) of the transfer function K(i, j,m,n). For clarity, we illustrate the gradient
calculation in Fig. 2, with the two modules highlighted by red and blue rectangles.

In practice, it is often difficult to compute the gradient in Eq. 7 because it requires a highly
accurate estimation of K(i, j,m,n), i.e., local PSFs at different image locations. Estimating
these PSFs either blindly or using a checkerboard remains a challenging problem, although
several works [8, 9, 14, 39] have proposed methods of simplification. In this paper, we try to
solve this problem by replacing all the required PSFs with optical computing. Physically, K is
the transfer function of the original lens system, which moves the photons from (i, j) in the
object plane to (m,n) in imaging plane. Thus, the summation operation ∑m,n K(i, j,m,n)(·) in
Eq. 7 exactly depicts the imaging process and can be computed by capturing an image using
the original lens system, as shown in Fig. 3(a). Similarly, the remaining two summation op-
erations ∑i, j K(i, j,m,n)(·) can be computed by using a lens system and the transfer function
K′(m,n, i, j) = K(i, j,m,n), i.e., the original lens system after exchanging its object and imag-
ing plane, as shown in Fig. 3(b). To simplify representation, in the following discussion we
denote these two optical computing techniques as forward and backward convolution.

2.1. Optical computing for forward convolution

The forward convolution (FC(·)) describes the projective imaging from the latent sharp image
L to its aberration-corrupted version,

FC(L)(i, j) = ∑
m,n

L(m,n)K(i, j,m,n). (8)

Usually, the PSFs of the camera lens K(i, j,m,n) vary at different (i, j)s and are very hard
to estimate. In spite of recent progress in the calibration of camera PSFs[7, 9, 13], existing
lens-aberration removal algorithms still suffer from the inaccuracy and limited range of PSFs
estimation.
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Fig. 4. Steps for approximating backward convolution using forward operation.

Let us return to the widely used deblurring framework for aberration compensation. The pur-
pose of estimating a PSF is to perform a forward convolution corresponding to the degeneration
process. Suppose the lens used to capture the low quality input is available, we can completely
replace the estimate PSF convolution by capturing an image with the original camera. In prac-
tice, we can simply conduct the forward convolution by simulating the projection process with
a display–camera system.

As shown in Fig. 3(a), the forward convolution of Eq. 8 in deblurring algorithms can
be computed by imaging L using the original lens and the result of forward operation
∑m,n L(m,n)K(i, j,m,n) is accurately recorded on the image sensor. Therefore, we propose to
design an optical computing system composed of the original camera and a display instrument
to compute the forward convolution exactly and physically.

2.2. Optical computing for backward convolution

As discussed earlier, the backward convolution can be optically modeled by an ’inverse’ optical
lens, which means exchanging the object and imaging plane in the optical system computing
forward convolution, as shown in Fig. 3(b). However, the system in Fig. 3(b) is not easy to
build, because the required sensor size is significantly larger than that of a common camera
CCD. Fortunately, the local PSFs caused by optical aberrations vary smoothly in the spatial
domain, and thus can be regarded patch-wise as uniform [15, 39]. Based on this property, in
this paper, a patch-based method is proposed to approximate the backward convolution using
the original lens system.

Mathematcially, the intensity at a given pixel (m,n) in L’s backward convolution BC(L) can
be computed by the offset formula with respect to a certain pixel (x0,y0) within its neighboring
area,

BC(L)(m,n)=∑
i, j

L(i, j)K(i, j,m,n)= ∑
∆i,∆ j

K(x0+∆i,y0+∆ j,x0+∆m,y0+∆n)B(x0+∆i,y0+∆ j),

(9)
where ∆i = i− x0, ∆ j = j− y0, ∆m = m− x0, and ∆n = n− x0 are the offsets.

Since the PSF K(i, j,m,n) is approximately uniform in a local patch, for sufficiently small
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|∆x| and |∆y| we have

K(i, j,m,n)≈K(i+∆x, j+∆y,m+∆x,n+∆y). (10)

Let ∆x =−∆m−∆i and ∆y =−∆n−∆ j, substituting Eq. 10 into Eq. 9 yields

BC(B)(x0 +∆m,y0 +∆n)≈ ∑
∆i,∆ j

K(x0−∆m,y0−∆n,x0−∆i,y0−∆ j)B(x0 +∆i,y0 +∆ j).

(11)
Defining B′ as the centrosymmetric (i.e. horizontally and vertically flipped) version with respect
to (x0,y0) of the input image B, we have B′(x0−∆i,y0−∆ j) = B(x0 +∆i,y0 +∆ j) and Eq. 11
becomes

BC(B)(x0 +∆m,y0 +∆n)≈ FC(B′)(x0−∆m,y0−∆n), (12)

which is the centrosymmetric version of BC(B) with respect to (x0,y0) and can be computed
easily by the original lens system. Since the offsets ∆x = −∆m−∆i and ∆y = −∆n−∆ j need
to be small to ensure high approximation accuracy, we split the images into sufficiently small
patches and approximate their backward convolutions using the original lens system. In this
paper, we refer to this approach as the flip–FC–flip approximation.

In our experiments, we computed the backward convolution of several patches simulta-
neously (in one snapshot) for an accelerated response. Because the flip manipulation would
change the connection relationship along the division boundary (the pixels on the two sides
of the border becomes nonadjacent after flipping), if we apply convolution to these adjacent
patches simultaneously, the pixels on one side of the border will affect the result on the other
side. To prevent this overlapping between adjacent patches, we split the image B into a set of
local patches arranged into four images to ensure that all the neighbors of a single patch do not
appear in the same image. As illustrated in Fig. 4, the approximate version of BC(B) can be
computed by the following steps: (1) Split the input image into four images to make sure the
adjacent patches do not appear in the same image, as shown in Fig. 4; (2) Flip all the patches in
both horizontal and vertical directions; (3) Display the four images and capture them using the
original camera lens (forward convolution); (4) Flip the local patches (including the extended
margin caused by aberrations) in the captured image in both horizontal and vertical directions;
(5) Sew the four images together to form the final result.

3. Implementation details

Since the optical computing framework matches the physical imaging process quite well, the
setup can be built easily by untrained users. The system includes a computer with display in-
strument (either monitor or projector) and the original camera that captures the input image.
Specifically, the framework incorporates the forward and backward modules into a general
deblurring framework and conducts several display-imaging processes to get the compensated
results. The user only need to fix the camera and display instrument to ensure the display screen
visible to the camera and the algorithm will calibrate the system (both the display instrument
and the camera) and compute the final result automatically. Figure 1 shows our prototype sys-
tem and the result for restoring a low quality image. In the following subsections, the system
calibration will be detailed to validate the feasibility of the proposed approach.

Geometric calibration. Geometric calibration is used to build correspondence between the
display and the image sensor. Instead of establishing and solving the projective geometry based
model, we proposed to use the checkerboard pattern to compute the correspondence of the cor-
ner points and compute that of the rest pixels by spline interpolation. Considering the chromatic
aberration, we perform geometric calibration in three channels separately.
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Fig. 5. Geometric (a–d) and photometric calibration (e,f) in the blue channel. (a) Orig-
inal chessboard pattern. (b) Captured image. (c) Warping vectors of landmarks for interpo-
lation. (d) Geometrically calibrated pattern. (e) Ratio image for dark-corner correction of
the blue channel. (f) The chessboard pattern after correcting the geometry and dark corner
distortions.

Figure 5 shows the adopted checkerboard pattern and the intermediate results of geomet-
ric calibration of the Blue channel. Firstly, the checkerboard pattern is displayed onto screen
and captured with the camera, and then the corners are detected automatically by RADOCC
algorithm [40] to derive the display-camera correspondence of these corners. Next, the rest cor-
respondences are predicted by spline interpolation. After each display-capturing process, we
warp the captured image (see Fig. 5(b)) according to the pre-calibrated correspondence before
feeding it into the iterative framework, as shown in Fig. 5(d).

Dark corner calibration. To offset the vignetting effects in each channel, we displayed three
images with constant intensity in the R, G, or B channel individually (intensity is set 128 with
the dynamic range 0∼255 to prevent underexposure or saturation), then computed the ratio
images between the geometrically calibrated images and the input ones. Figure 5(e) shows the
geometrically calibrated ratio image, which can be used to remove the dark-corner effect in the
blue channel. Figure 5(f) shows the chessboard pattern following geometric and dark-corner
correction.

Cross-channel response calibration. As is well-known, the three channels of a camera sen-
sor do not response to different wavelengths in a clear-cut manner. Figure 6(a) shows the re-
sponse curves for the RGB channels of a camera (Point Grey FL3-U3-13S2C-CS), obviously
there exists a large overlap between the B and G (also R and B) response curves. Since the col-
ors of the both camera and the display device are generated by a composite of three basic colors
determined by a color filter array, we propose to use a 3×3 cross-channel response matrix to
calibrate the camera responses with the color channels of the display device.

Considering that there exist both linear and non-linear color transformations during the
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Fig. 6. Cross-channel response calibration. (a) Response curves of Point Grey FL3-U3-
13S2C-CS. (b) Blue channel gradation map for calibrating the linear component C and
nonlinear component fr,g,b. (c) Response curves of r, g, b channels vs. input channel b. (d)
and (e) An image before and after cross-channel response calibration.

display–capture process, we formulate the cross-channel response of the camera sensor to the
RGB display as  r′

g′

b′

=

 Cr,r Cg,r Cb,r
Cr,g Cg,g Cb,g
Cr,b Cg,b Cb,b

 fr(r)
fg(g)
fb(b)

 . (13)

Here r, g, and b are the three channel intensities of the displayed image and r′, g′, b′ are those
of the captured image, fr,g,b(·) is the nonlinear component, while the cross-channel matrix C =
{Cc1,c2} is the linear component with Cc1,c2 describing the contribution of the display channel
c1 to the camera channel c2. In practice, we apply basic algebraic techniques to normalize the
diagonal entries in C to 1 for convenience.

To calibrate C and fr,g,b, we use intensity gradation maps in three channels. Taking the blue
channel as an example, we first put the gradation map in Fig. 6(b) onto the display and perform
geometric and dark-corner calibration on the captured image. Then, the camera response to
each intensity level is computed by averaging over all the pixels at this level. Figure 6(c) shows
the response curves of r′, g′, b′ vs. the input b channel. The blue curve (b′ vs. b) is simply the
nonlinear mapping fb(·), and the scaling coefficient between blue curve and green/red curve is
Cb,g/r.

Given the cross-channel matrix C and the nonlinear response curve fr,g,b, we can estimate
the true intensity of an input image from its calibration. For each pixel in the observed image
with intensities r′, g′, b′, the intensities of each corresponding input pixel can be derived by
[r,g,b]T = f−1

r,g,b(C
−1[r′,g′,b′]T ), which is implemented as a look-up table. Figures. 6(d) and

6(e) show the captured image before and after cross-channel response calibration.
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Fig. 7. The results of our approach with different patch sizes. (a) The convergence
curves of our method with backward convolution conducted by accurate numerical calcula-
tion and patch-wise flip–FC–flip approximations with different patch sizes. (b)(c) Restora-
tion results by accurate numerical calculation and the proposed approximation with a 60-
pixel wide patch size.

(a) (b) (c)

(d) (e) (f)

Fig. 8. The error map of our flip–FC–flip approximation method. (a) The ground-truth
sharp image. (b) The local PSFs for the synthetic single lens camera. (c) Simulated image
contaminated by optical aberrations (single lens). (d) Ground-truth image after backward
convolution. (e) The approximate backward convolution result of our flip–FC–flip method.
(f) The error map of our approximation.

4. Experimental results

4.1. Quantitative accuracy analysis of synthetic data

To verify the accuracy of our optical computing approach, a series of experiments and quantita-
tive evaluations were conducted, with ground-truth results generated by simulating the imaging
process of optical lenses using a ray tracing algorithm. In this experiment, we synthesized a
single biconvex lens ( f =75mm, f /2, bk7) imaging system with the display–camera distance
set at 4 m and the Enhanced ISO12233 Resolution Chart at a resolution of 1024 × 768 pixels
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Fig. 9. The results of our approach with different display–camera distances. (a)(b) and
(d)(e) show the captured degenerated images and corresponding PSFs with object distance
at 40 cm and 4 m, respectively. (c)(f) display the results restoring the degenerated image in
(a)(d) using the optical system with display–camera distance at 4 m and 40 cm, respectively.

used as a test image. The wavelet term weight λ was 3, and patch size was 80 × 80 pixels.
All the synthetic experiments were performed with these settings, except for the experiments
specially designed for analyzing the influences of one of the above parameters.

Approximate accuracy of the flip–FC–flip approach. We first discuss the influence of patch
size in the approximated backward-convolution operation. According to the mathematical anal-
ysis in Sec. 2.2, we know that the accuracy of our flip–FC–flip approximation method depends
on the patch size setting. Here, we test the proposed method on different patch sizes and show
the convergence performance of our deconvolution algorithm in Fig. 7(a). Considering the ef-
fectiveness of the structural similarity index (SSIM)(see [41] for details) in accessing the quality
of blurred images, we adopt as our evaluation metric. We can see that although reduced patch
size will yield better results, the influence of patch size becomes very small when smaller than
80× 80 pixels. Figure 7 shows the results from precise simulation of the forward and backward
convolution operations in (b) and the result from applying our approximate method in (c) with
60-pixel wide patches. From Fig. 7(b) and 7(c), we see that our flip–FC–flip approximation
approach can achieve almost the same result as that of the forward convolution. According to
Fig. 7(a), we can see that the algorithm achieves optimal performance at around 10 iterations.
Therefore, all the experimental results shown in this paper are derived with 11 iterations, except
for the experiment comparing performance with varying iteration. (See Fig. 11.)

To analyze the accuracies at different image locations, we show the error map between the re-
sults of our flip–FC–flip approach and the exact numerical calculation. The PSF map is shown
in Fig. 8(b). The ground-truth sharp image in Fig. 8(a) is placed at the objective plane, and
the aberration-contaminated image is recorded on the image plane, as shown in Fig. 8(c). Fig-
ure 8(d) is the ground-truth result for the backward convolution of Fig. 8(a), by simulating
the backward-projection system shown in Fig. 3(b), while Fig. 8(e) is the approximated result
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using the flip–FC–flip method, with a patch size of 80 × 80 pixels. It is obvious that our ap-
proximate approach can achieve very high accuracy, so that it is hard to find the difference
between Fig. 8(d) and 8(e) visually. Therefore, for better comparison, Fig. 8(f) visualizes the
absolute difference between our result and the ground truth. We can see that the approximate
approach works fairly well in the center region, and the errors increase slightly in the corner
regions where the local PSFs exhibit greater non-uniformity. However, these errors have negli-
gible influence on the final restoration.
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Fig. 10. Restoration performance with different regularization weights and noise
levels. (a) SSIM curves with varying regularization weights and noise variances. (b)
Aberration-corrupted images with noise variance at 18 (image intensity ranges from 0 to
255). (c) Our restoration result by setting the regularization weight to 18.

Different display-camera distances. The object distance of the camera capturing the input-
degenerated image is usually different from the display–camera distance of our optical com-
puting system. To test the influence of the different object distances of two systems on overall
performance, we simulate a degenerated input image at given object–camera distance and con-
duct restoration using a setup with a different display–camera distance.

Figure 9(a) and 9(d) respectively show the degenerated images captured with 40 cm and 4
m object distance, and the corresponding ground-truth PSF maps are visualized in Fig. 9(b)
and 9(e) respectively. We can see that the lens PSFs at different object distances as well as the
corresponding degenerated images (Fig. 9(a) and 9(d)) are very similar. The deblurring results
of the low quality images with 40 cm/4 m object distance using 4 m/40 cm display–camera
distance system are shown in Fig. 9(c) and 9(f), from which we can see that although the
two optical computing systems have different object distances from those during the original
acquisition, the restoration results are still reasonable and promising. In other words, if the
captured input image and our optical computing system are both well focused (no out-of-focus
effect), we can neglect the difference in object distances during acquisition and restoration.

This phenomenon can be explained by the causation of optical aberration. It is known that
most aberrations, including distortion, spherical aberration, coma aberration, chromatic aberra-
tion, etc., are caused by the outer regions of the camera lens and obvious with large aperture
size or field of view. In other words, the aberration pattern of a specific camera is generally
determined by its aperture size. Therefore, we need only to ensure consistency between the
aperture sizes during acquisition and restoration of the input image. This also explains why the
calibration-based methods [7, 14] need to calibrate the PSFs of a certain camera only once to
restore all its captured images.
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Discussion on system noise and weight of regularization term. The regularization term can
help reduce the influence of system noise, so the weight λ needs to be adjusted according to the
noise level. To this end, we conduct a synthetic experiment to analyze the relationship between
noise level and the weight setting of the regularization term. We add Gaussian white noise after
each simulated display-imaging operation, and test the performance of different regularization
weights at different noise levels. For these experiments, we still use SSIM for quantitative
evaluation, and the results are shown in Fig. 10(a). We can see that our algorithm achieves
optimal performance when the regularization weight is near the noise variance. Figure 10(b)
and 10(c) respectively show the simulated aberration-corrupted image and the final restoration
result, with display-imaging noise superimposed (here noise variance = wavelet term weight
λ = 18). Wwe can see that although the details are significantly enhanced, the final result still
suffers from a high noise level. Therefore, we suggest a suppression of system noise by tuning
the display instrument and system layout to make imaging noise as low as possible.

Fig. 11. Intermediate results of the first several iterations.

4.2. Real cases

We built a prototype setup, shown in Fig. 1(a), to test the proposed approach on the low-
quality images captured by a Point Grey camera (FL3-U3-13S2C-CS) and a single convex lens
( f =6mm, f /2). An ASUS AS228 monitor with 1920× 1080 resolution was used as the display
instrument, and the display–camera distance was around 40 cm. In our experiments, the patch
size was set to 80 × 80 pixels; wavelet term weight λ was 3. The intermediate results of our
aberration compensation system are shown in Fig. 11. It is obvious that the proposed method
converges to sharp resolution within a few iterations. Because of the elimination of the effects
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Fig. 12. More results for three different lenses.

from inaccurate PSFs, the compensation algorithm can converge robustly even without using
any delicately designed deconvolution algorithm.

We also test the proposed approach on images captured by mounting various simple lenses,
and results are shown in Fig. 12. These promising results for widely differing cases validate the
applicability and high performance of our approach.

5. Summary and discussions

We proposed a framework for removing the optical aberration of low-end camera lenses via
optical computing. This system, which is composed of a computer, a monitor, and the original
camera, is easy to build and can be calibrated without any user interaction or the need of a cal-
ibration board. The proposed approach is advantageous in multiple aspects: high performance
and robustness due to highly accurate forward and backward convolution, high efficiency pro-
vided by optical computation, and easy implementation with a user-friendly interface.

Although we limited our study to addressing depth-independent and smoothly varying degra-
dations, the proposed framework is quite promising because these two assumptions hold for
most lens aberrations. There are some other limitations and possible extensions for our ap-
proach: (1) The proposed system can only work in offline mode, which limits its applications
in online image enhancement. (2) The algorithm assumes that the input image is completely
focused and the display instrument is also placed within the depth of field of the camera to pre-
vent the algorithm suffering from out-of-focus degradation. (3) The proposed method requires
the optical computing system for processing every image, and cannot be calibrated beforehand.

Besides, it is worth noting that considering the limitation of the sensor resolution of the
camera we used (Point Grey FL3-U3-13S2C-CS), the resolution 1024×768 pixels is used in
this paper. However, the proposed method can be applied for higher resolution if a high-end
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camera sensor is available. The only limitation is the resolution of the monitor screen should
be no smaller than that of the camera sensor.

In the future, the proposed method may be extended in the following respects: Firstly, the
depth-independent limitation may be overcome with the progress of 3D-display instrumenta-
tion. Secondly, this work only tests a system with a simple deconvolution algorithm, and in-
tegrating more effective deconvolution into the framework is one of our future intentions and
should improve the performance further. Also, building a parallel system that encapsulates the
camera and the to-be-imaged object to extend the current system to online applications is a
promising extension.
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