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Abstract

Hyperspectral images can provide rich clues for various
computer vision tasks. However, the requirements of profes-
sional and expensive hardware for capturing hyperspectral
images impede its wide application. In this paper, based on
a simple but not widely noticed phenomenon that the color
printer can print color masks with a large number of in-
dependent spectral transmission responses, we propose a
simple and low-budget scheme to capture the hyperspectral
images with a random mask printed by the consumer-level
color printer. Specifically, we notice that the printed dots
with different colors stacked together, forming multiplica-
tive, instead of additive, spectral transmission response,
which therefore can generate new color filters with spectral
transmission response uncorrelated with that of the original
printer dyes. We validate the corollary by both the simu-
lated and real captured data, and based on it, we propose
a simple snapshot hyperspectral camera. A convolutional
neural network (CNN) based method is developed to recon-
struct the hyperspectral images from the captured image.
The effectiveness and accuracy of the proposed system are
verified on both synthetic and real captured images.

1. Introduction

Spectra can provide additional information of scenes be-
yond the ability of human eyes and commercial RGB cam-
eras, having great potential to facilitate computer vision
tasks [3, 9, 28]. However, the high complexity and cost of
spectral imaging systems greatly raise the difficulty of ac-
quiring spectral images, and thus limit the wide application
of spectral information.

Traditionally, to capture a spectral image, which is a
3D data cube with spatial and spectral dimensions, the
scanning based methods (either the spatial scanning[17] or
the spectral scanning[!5]) are required. These scanning
based system can capture images with several to hundreds
spectral channels, sacrificing the ability to handle dynamic
scenes. To take the spectral image in a single snapshot,
the snapshot spectral imaging methods are proposed in the
past few years [0, ]. However, most of
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Figure 1. Overview of the proposed hyperspectral imaging system:
with a consumer-level printer, a random color printed mask can be
attached to the sensor of the camera to sample the hyperspectal
images. Through randomly overlaying ink droplet, the spectral
transmission response of different points is rendered high uncorre-
lated and faciliate the full spectrum recovery with details. A con-
volutional neural network is proposed to recover the hyperspectral
images from the randomly coded images.

these systems suffer from the system complexity, which
is difficult to calibrate. Customized spectral filter based
methods are also proposed to realize compact hyperspectral
imaging [5, 19, ], while these method requires cus-
tomized color filter of high-precision fabrication process.
RGB cameras are also studied to be turned into spectrome-
ters [2, 4, ], while the uncorrelated spectral trans-
mission number is limited, which is not enough to resolve
complex spectral details.
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In this paper, we propose a simple and low-cost spectral
imaging scheme with a color mask, which can be printed by
consumer-level printers. The idea of the proposed system is
based on a simple but not widely noticed phenomenon, i.e.
the spectral transmission response of overlappingly printed
color dots is the multiplication of the spectral transmission
response of each overlapped color dots. The multiplied
spectral transmission response is linearly uncorrelated with
that of the printer inks. Therefore, we can generate a large
number of uncorrelated spectral transmission response us-
ing few kinds of printer inks. Benefiting from these un-
correlated responses, our scheme can provide much more
well-conditioned sensing model for hyperspectral imaging
scenario. The proposed method are validated on both the
simulated and real data, and a simple prototype of snapshot



hyperspectral camera is built. We demonstrate that hyper-
spectral images can be reconstructed well with high quality
by a CNN-based neural network from observations of pro-
posed system. The main contributions of the paper are:

e We propose to generate a large number of uncorre-
lated spectral transmission response of mask by us-
ing consumer-level color printers and propose a sim-
ple spectral imaging scheme based on the randomly
printed color mask.

We develop a CNN-based reconstruction network to
recover the hyperspectral images from observations.

We build a prototype imaging system to verify this ap-
proach and demonstrate the feasibility and effective-
ness on both synthetic and experimental data.

2. Related Work

Snapshot hyperspectral imaging technologies has been
evolving rapidly in the last few decades. To capturing the
3D hyperspectral images with 2D imaging sensor in a snap-
shot way, either spatial or spectral coding are introduced. In
terms of the specific coding techniques, existing methods
can be divided into three main categories: dispersion based
spectral imaging methods [6, 16, ], the scattering
based spectral imaging methods [ ], and the spectral
filter based methods [2, 1.
Dispersion based Spectral Imaging Methods. With dis-
persive elements, e.g. prisms or gratings, the spectrum of
each point is spread spatially. Through introducing a spatial
coding, the spectral information is coded indirectly and cap-
tured [6, 10, ]. While these spectral imaging
method could realize snapshot and high quality hyperspec-
tral imaging, sophisticated calibration are always required
and the system is bulky. Compared with these methods, our
hyperspectral imaging method only requires to print a color
mask and attach the color mask in front of the camera sen-
sor, which is easy to implement and of low cost, promising
for wider application in practice.

Scattering based Spectral Imaging Methods. Besides
spectral coding through introducing dispersers, scattering
medium is also introduced to encode the spectral informa-
tion with different speckle patterns [12, 29]. Hyperspectral
images could be recovered through deblurring with the pre-
calibrated speckle pattern. While these method are promis-
ing for compact hyperspectral imaging, the spectral resolv-
ing ability is largely limited due to the speckle correlation
among different wavelengths. In our method, we propose
to use overlaying of ink drops to generate spectral modu-
lations which is highly uncorrelated and could enable high
quality encoding of hyperspectral imaging.

Spectral Filter based Spectral Imaging Methods. Other
than those indirect spectral coding methods, spectral imag-
ing could also be realized through direct spectral coding:

> [l

il

s s s bl ) s s )

s > [l

4322

designing and attaching the spectral filter in front of the
camera sensor [5, 19, ]. Deep learning or dictionary
learning based methods, which exploit the sophisticated
spatial-spectral prior, are proposed for high quality hyper-
spectral recovery [8, 13, 14]. These hyperspectral imaging
methods may require high precision manufacturing of spec-
tral filters, while our spectral imaging method only requires
to print a color mask with a consumer-level printer.

Recently, turning commercial RGB cameras into hy-
perspectral imaging also emerged as a hot research topic
[2, ], which is promising for a low-cost spec-
trometer. However, the uncorrelated spectral modulations
are limited and may not be enough to recover spectral de-
tails. Our method could provide various uncorrelated spec-
tral modulations, making it possible to realize higher quality
encoding and recovery of hyperspectral information.

In all, we propose a novel low-cost and easy-to-
implement hyperspectral imaging technique. The calibra-
tion of our method is easy and most importantly, through ex-
ploiting the new generated spectral transmission responses
of randomly overlaying ink drops, detailed hyperspectral in-
formation could be encoded. We propose a CNN-based net-
work model to extract the hyperspectral images and demon-
strate the effectiveness of our method through both syn-
thetic and physical experiments.
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3. Multiplicative Character of Spectral Trans-
mission Responses

The basis of our work is that the spectral transmission re-
sponse of inks of different colors is various and the spectral
information can be encoded with randomly printed color
films. We investigate the printed color dot characteristics,
formulate the mask printing model and analyze the color
transmission responses with different printing parameters.
Based on the analysis, we could choose the optimal physi-
cal parameters to print our spectral coding mask.

3.1. Characteristic Exploration of Single Color Dot

Random distribution Characteristics. We first observe
the distribution of ink droplets at the micron level using
a microscope with 20X magnification. The CMYK color
mode, commonly used in color printing, contains four stan-
dard colors, i.e. cyan (C), magenta (M), yellow (Y), and
black (K). Since black ink absorbs light of all wavelengths,
we generated a background picture with CMYK mode in
which case C, M and Y channels is set to 10 respectively
and K channel is set to 0. We print a uniform mask with the
CMYK value on a transparent film and observed the printed
picture under the microscope, as shown in Fig. 2(a). It can
be observed that the positions of droplets at the micron level
are not regularly arranged, but relatively random and uncon-
trolled. Each individual drop of ink is approximately round.
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Figure 2. (a) Image of ink droplet distribution at micron level. (b)
Spectral transmission response of CMY color printed film.

New colors such as purple, green and orange are produced
due to the overlapping of the CMY ink droplets.
Multiplicative Stacking Characteristics. Observing the
random distribution of ink drops, we further more explore
how would the spectral transmission response change if dif-
ferent ink droplets are stacked. We assume that the trans-
mission response would be a multiplication of the transmis-
sion response of each overlapped ink droplet, which can be

formulated as
¢ =[] e (M)

where c,, means the transmission response of overlapped
layers and c; is the transmission response of the i th layer.

We conduct an experiment to verify the assumed stack-
ing model. A single point spectrometer (ASD TerraSpec
4 Standard-Res Mineral Analyzer) is used to measure the
transmission responses. After removing the influence of
light source and camera spectral sensitivity response, the
transmission responses of CMY inks are shown in Fig. 2(b).
We calculate the transmission response of the overlapped
ink droplets of magenta- magenta and cyan-magenta and
measure that with the single spectrometer. As shown in
Fig. 3, the measured transmission responses match well
with the calculated one by multiplication.

—— Measured Curve-M&M
= =Estimated Curve-M&M

—— Measured Curve-C&M
= =Estimated Curve-C&M

o o
o 2 2
O
o o
o 2 2
S n R

Y
9
R
o o o o
S o 5 9
8 8 & &

Spectral Transmission Response
5 o
2
3

Spectral Transmission Response

(a) (b)
Figure 3. (a) Transmission response with the same ink stacking.
(b) Transmission response with different ink stacking. The esti-
mated spectral transmission responses are calculated by Eq. (1).

3.2. Modeling Multilayer Monochromatic Mask

With the multiplicative stacking model, we proceed to
model the multilayer monochromatic mask to simulate the

transmission response matrix of printed mask. The main
factors to be considered in modeling are ink density p, num-
ber of layers L, diameter of single droplet d and number of
ink colors. For one monochromatic layer, the printed mask
can be formulated as

Mi = I(p) * K(da Ci)7 (2)

where I(p) denotes the random 0-1 printing pattern of di-
mension H x W. M, means the mask transmission response
matrix, K denotes the circle kernel whose diameter is d (the
shape of printed drop is approximately circular in practice).
c; is the spectral transmission response of the ¢ th layer. *
means the convolutional operation.

For a mask of mixed colors, it is equivalent to print mul-
tiple layers of various colors. Inspired by the multiplicative
stacking characteristics, multilayer monochromatic mask
M can be modeled as

M =[] M, 3)

where | [ means element-wise product.

According to the established model, we simulate the
mask printed under different conditions and discuss the ef-
fects of these parameters on spectral modulation to select
the best print settings for spectral reconstruction in the next
section.

3.3. Characteristic Exploration of Multilayer
Monochromatic Mask

In this chapter, we analyze the spectral reconstruction
perfomance of different physical parameters for printing the
color mask and choose the optimal one for our imaging
technique. Based on the spatial consistency hypothesis of
spectral data in natural scenes, the imaging model of the
light reflected by objects in the scene through printed mask
can be expressed as

y = Cs, )

where y = [y1, 2, ,yn|? is signal encoded by printed
mask, C = [ci,c2, -+ ,c,]7T refers to transmission re-
sponses of printed mask, and s means spectra of the scene.
Figure(5) shows a pseudo-color image of the print mask un-
der several parameters.

As for printing the color mask, there are four physical
parameters: the diameter of each ink droplet, the print den-
sity, the color number and the overlapping layer number.
To choose the parameter value, we firstly synthesize the
color mask with different color number and layer number
and the other parameters remain consistent, as shown in
Figs. 4(a)-(b), we plot the rank of the transmission response
of the mask and the corresponding reconstruction result cor-
responding to different parameters. As shown in Fig. 4(a),
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Figure 4. Setting ink density p to 0.01 and ink droplet diameter d
to 4 pixels: (a) rank analysis for different number of colors used,
(b) reconstructed spectrum at parameter marked in (a). Setting ink
droplet diameter d to 4 pixels and color number to 10: (c) rank
analysis for different layers and density, (d) reconstructed spec-
trum at parameter marked in (c). Setting ink density p to 0.01 and
color number to 10: (e) rank analysis for different droplet diame-
ter, (f) reconstructed spectrums at parameter marked in (e).

the rank of the transmission response of the printed mask
increases with the overlapping layer number. The rank of
more colors is larger than that with smaller color number,
we show the reconstruction results of a spectrum with dif-
ferent physical parameters, as marked in Fig. 4(a). We can
see that with the same overlapping number, the more color
number, the rank of the transmission response is higher and
the ground truth spectrum is reconstructed with higher fi-
delity. Print density also plays a key role in mask transmis-
sion response characteristics. As shown in Figs. 4(c)-(d),
when the print density is 0.001 or 0.01, the rank and hy-
perspectral reconstruction results increases as the number
of overlapping layers increases. However, when the print
density is 0.1, the rank and the reconstruction result goes
down as the overlapping layer number increases. High den-
sity would decrease the light throughput and deteriorate the
spectral coding ability of the color mask. We finally ana-
lyze the effect of the diameter size. The changing trend of
rank is shown in the Figs. 4(e)-(f). It can be inferred that the
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Figure 5. The image of the color mask with different parameters.

larger diameter size, the more information will be collected
when coding in the case of relatively fewer printing layers.
However, when the diameter is too large (8 pixels), printing
more layers will lead to a decrease in randomness. Some of
the simulated print masks are shown in Fig. 5, ink droplets
of different colors are randomly printed and overlap with
each other randomly, generating highly uncorrelated spec-
tral transmission responses.

In our experiments, considering the trade off between
the light throughput and the recovering ability of the color
mask, we choose the print density to be 0.01, diameter 4,
color 7 and the layer number 14 as our final physical param-
eter for the printing of the color mask. In the next section,
we will develop a CNN for the reconstruction of hyperspec-
tral image with our imaging technique.

4. Image Formation Model and Inverse
Method

By placing the color mask in front of the sensor, the spec-
tral images are spectrally encoded, integrated along wave-
length and captured by a 2D sensor. The image formation
model is

L(a,y) = > ®(x,y,)S(z,y, ), (5)
A

where ® denotes the spectral transmission matrix of the
color mask, S denotes the 3D hyperspectral images, and
I is the captured image. Reconstructing the 3D hyper-
spectral images S from the captured 2D coded image is
highly underdetermined, where sophisticated sparsity prior
of hyperspectral images is required. Dictionary based meth-
ods has been pioneeringly applied to introduce the statis-
tical prior of hyperspectral images into the inverse prob-
lem and successfully recover high quality hyperspectral im-
ages [, 14, 24]. Beyond that, CNN which is expert in learn-
ing statistical priors from data, have also been applied and
achieved remarkable performance in hyperspectral image
reconstruction [8, 13, 23].

In this paper, we propose a CNN-based neural network
for the spectral reconstruction. In order to increase the re-
ceptive field (RF [20]) of the model and enable it to inte-
grate the coded information of mask of different size level, a
multiscale network model is employed. The network struc-
ture is shown in Fig. 6. The proposed method learns an



end-to-end mapping from a large number of coded image
and ground truth hyperspectral image pairs. The input of
network is a two-dimensional image encoded by printing
mask, and the output the is reconstructed spectral image.
The CNN-based model we used is represented as F. The
input and output pairs fed to F is represented as {I;|S; }".
I is obtained by Eq.(5) in synthetic experiment with ground
truth hyperspectral images S, where ¢ means the transmis-
sion response matrix of the color mask, ® € R7*WxA and
S € REXWXA A jg the spectral dimension. The network
output is

S = F(1). (©)

Network structure. Our model (Fig.6) is based on the mul-
tiscale structure, which is downsampled three times with
maximum pooling. The size of feature maps is shrunk to
half of previous layer after downsampling. Bilinear upsam-
pling instead of deconvolution operation is used to prevent
the checkboard effect. Bottleneck in Resnet [18] is added
following upsampling to smooth the feature map. Skipping
connection are introduced in our network structure to com-
bine the shallow information and deep feature domain. The
multiscale scheme is proposed basically on the purpose to
extract the correlation information from pixels in different
scales of receptive fields for better spectral reconstruction.
Loss function. Parameters of each layer in F is defined
as @ = {W;,b;}{*!, and d is the number of hidden lay-
ers. These parameters are trained with the loss function in
Eq. 7. The first term is the mean squared error (MSE) of the
groundtruth hyperspectral image S and the predicted hyper-
spectral image S from the network. In order to recover the
detailed characteristic information in spectral dimension,
we proposed the spectrum constancy loss as the second term
in Eq. 7, which constraints the first-order derivative of S
and S to be similar. In addition, decay term of weights is
included to avoid overfitting.

L =8| F(T) = 8|3+ 2l V2 S — VaS|?
data term

- d+1
+ IS Wl
1

decay term

spectrum constancy loss

(7

Implementation Details. The databases used for training
are publicly available including Harvard [7], Columbia [33],
KAIST [8], and Manchester [25, ] spectral image
database. Data augmentation method is used to preprocess
datasets by means of cutting, scaling, rotation, etc. 40000
enhanced data pairs of size 256 x 256 x 31 are sampled. The
augmented dataset is divided into training and validation set
by 4 : 1. Pytorch framework is employed to train our model.
ADAM [21] gradient descent method is used. The leaning
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rate is set at 10~% at the beginning, and is scaled to 1/3
of previous one starting from the 6th epoch. (5 is gradu-
ally increased from the 6 th epoch, scaled by 1.1 times each
epoch. The weight 7, for the decay term is set to 1075,
With 11 hidden layers, the network training process lasted
about 24 hours. The hardware platform we used is con-
figured with an Intel(R) CPU E5-2609 with 64GB memory
and NVIDIA Tesla P100 with 16GB of memory. Zero mean
simulated Gaussian noise with a standard deviation of 5 is
added during training and testing.

5. Experiment

We demonstrate the effectiveness of our method through
simulation and physical experiments. In simulation, we
compare our spectral reconstruction with other three typical
methods [16, 24, 26], both quantitatively and qualitatively.
Our method performs highest quality spectral reconstruc-
tion compared with the other methods. In physical experi-
ments, we build a prototype system, capture the data with
our imaging system, and recover the spectral response of the
scene, we demonstrate our method through comparing the
recovered spectra of points by our method with the spectra
captured with the ASD spectrometer .

5.1. Experiments on Synthetic Spectral Data

We first carry out experiments on synthetic data to verify
that the coding method of our system can collect more infor-
mation of the spatial and spectral data. Existing reconstruc-
tion techniques share an intrinsic trade-off between spec-
tral accuracy and spatial resolution, however our coding
method provides abundant unrelated observation bases that
can recover spectral details. Coded information is restored
based on data-driven reconstruction method. We compare
our reconstruction method against other three state-of-the-
art methods: training-based method from single RGB im-
age (Rgb) [26], dictionary-learning-based sparse coding
(SC) [24], and compressive spectral imaging with CASSI-
based dual-disperser architecture (DC) [16]. For fair com-
parison, parameters of the three methods are traversed and
set to be the ones with the best performance.

Quantitative Comparisons of Reconstruction. As shown
in Fig. 7, we test our proposed method on four validation
datasets which respectively are Harvard [ 7], Columbia [33],
KAIST [8], Manchester [, 25] spectral dataset. Average
peak signal to noise ratio (PSNR), structure similarity index
metrics (SSIM), mean squared error (MSE), and time to re-
construct hyperspectral images with 256 x 256 x 31 data
cube resolution are presented. Our reconstruction method
outperforms all three methods in all terms of these objec-
tive metrics, the PSNR and SSIM of our results are at least
8.31dB and 0.07 higher and the MSE of our methods is
much lower than the other methods. In terms of reconstruc-
tion speed, the time required by our method is orders of
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Figure 7. Objective metrics comparison: average PSNR, SSIM,
MSE, and required reconstruction time of different methods
over the four database (Manchester, Columbia, Harvard, KAIST)
are compared with our methods, quantitatively demonstrate our
method.

magnitude shorter than the other three methods. The effec-
tiveness of our method is demonstrated quantitatively upon
hyperspectral databases.

Qualitative Comparisons of Reconstruction. Further-
more, we show the reconstruction of our method and the
other three method on four images, each from a different
database. To compare the results clearly, we first calculate
the corresponding RGB images with the reconstructed hy-
perspectral images and RGB spectral response of commer-
cial RGB cameras, as the 1 —4 rows in Fig. 8. Through com-
paring with the other methods, the color image calculate
from the hyperspectral images recovered with our method
is the most similar with the ground truth. This could be fur-
ther demonstrate while comparing the error maps of RGB
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images of different methods, in the 5 — 8 the row. We pick
four point from these four scene and compare the recovered
spectrum directly in the first column, 5 — 8 rows. As is
shown, our methods could recover most of the details of the
spectrum, demonstrating the effectiveness of spectral cod-
ing.

5.2. Experiments on Real Captured Data

To further prove the validity of our spectral acquisition
method, we build a prototype system with the printed mask.
To make the mask more qualified and random, we firstly
investigate the transmission curves of 10 inks in the mar-
ket, and compare the cross correlation coefficient between
them. Seven inks which is least relevant with each other
is selected and randomly printed on the transparent film by
printer. According to the analysis above, diameters between
4 and 8 pixels is better. A mask is produced by printing
about 14 layers when the droplet density was set to 1%.
Since removing the protective glass in front of the sensor
and stick the printer color mask to the sensor may needs so-
phisticated manufacturing or fabrication technique to avoid
potential artifacts, here we leave that engineering part for
future work and build a relay system to simply demonstrate
our method.

As shown in Fig. 10, the acquisition system we propose
includes objective lens, printed mask, relay lens and the
imaging sensor. Objective lens is used to focus the light
from the scene on the printed mask, spectral information
is modulated by the printed mask. The modulated light is
finally imaged by the sensor through the relay lens.

The spectral transmission response of the printed mask is
calibrated using a high resolution spectrophotometer (with
spectral resolution: 0.1nm ). We change the emission wave-
length of the spectrophotometer and direct the monochro-
matic light into the integrating sphere to produce a spatially
uniform light. The transmitted images are captured every
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Figure 8. Simulation results on four images, each from a hyperspectral database (Manchester, Columbia, Harvard, KAIST). We compare
the synthetic RGB images and the spectrum at different points with the other three methods. Error map are also provided to compare the

reconstruction accuracy of different methods.

10 nm from 400 nm to 700 nm, which is the spectral trans-
mission response. Fig. 10 shows the transmitted image at
different bands. The spectrum of some of the points are
also shown in Fig. 10.

We use the calibrated transmission spectral response and
the hyperspectral image database to generate 40000 training
data pairs of size 256 x 256 x 31. It took approximately 24
hours to training the network. Zero mean simulated Gaus-
sian noise with a standard deviation of 5 is added during
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training and testing the same as synthetic experiment.

We capture the spectrally coded image with the proto-
type system and recovered the hyperspectral image with
the trained network. We only need to calibrate the acqui-
sition system once to get the spectral transmission response
®. Under the irradiation condition of iodine tungsten lamp
light source, we collect several coded images as shown in
the first column in Fig. 9. The results are shown in Fig. 9.
The first column is the captured image of different scenes.
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Figure 9. Experimental results of different scenes, the first column is the captured coded image, the second column is the synthetic RGB
image with the recovered spectrum, the 3-10 th column is the recovered hyperspectral channels, the last row is the comparison between the
recovered spectrum with the spectrum captured by a ASD spectrometer.

The second column is the synthetic RGB image with the re-
covered hyperspectral images. The 3-10 th column are the
single band spectral images of 490 nm, 500 nm, 580 nm,
590 nm, 610 nm, 630 nm, 670 nm and 700 nm.

To verify the effectiveness of our method, we capture the
spectrum with a ASD spectrometer and compare the recon-
structed spectrum with the spectrum captured with a ASD
spectrometer. We use the high reflectivity whiteboard to
correct the response differences between ASD and the sen-
sor we use. As shown in the last column at blue points,
our method could recover most of the spectral details. In
all, through the physical experiments, we demonstrate that
through combing the random color spectral encoding and
CNN-based decoding, our method could realize high qual-
ity hyperspectral imaging.

B 440nm 480nm
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Figure 10. Prototype hyperspectral imaging system and the cap-
tured transmitted images at different wavelengths for calibration.
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6. Conclusion

In this paper, we propose a simple, low-budget and fast
hyperspectral imaging methods. We observe that the trans-
mission spectrum of overlappingly printed color mask is the
multiplication of the spectral transmission response of each
layer, which could introduce a large number of a large num-
ber of independent spectral transmissions. Through printing
multilayer random color pattern, we could get an efficient
spectral coding color mask. Combined with the novel spec-
tral coding color mask, we develope a CNN-based network
model to recover the hyperspectral information from the
coded image with our color mask. Our hyperspectral imag-
ing is of the state-of-the art spectral retrieving quality and
the orders of magnitude faster speed of our hyperspectral re-
construction enables wider applications under dynamic high
level tasks based on hyperspectral images [3, 28].

Future work would be developing a compact spectrom-
eter based on our method. Although our prototype system
is not compact in its current relay-system implementation,
our method is indeed promising for a compact hyperspec-
tral imager through fabricating the spectral mask upon the
sensor, just as most of the spectral coding based spectrome-
ter [5, 19, 22].
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