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Hybrid Image Deblurring by Fusing Edge and Power
Spectrum Information
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Abstract. Recent blind deconvolution methods rely on either salient edges or
the power spectrum of the input image for estimating the blur kernel, but not
both. In this work we show that the two methods are inherently complimentary
to each other. Edge-based methods work well for images containing large salient
structures, but fail on small-scale textures. Power-spectrum-based methods, on
the contrary, are efficient on textural regions but not on structural edges. This ob-
servation inspires us to propose a hybrid approach that combines edge-based and
power-spectrum-based priors for more robust deblurring. Given an input image,
our method first derives a structure prediction that coincides with the edge-based
priors, and then extracts dominant edges from it to eliminate the errors in com-
puting the power-spectrum-based priors. These two priors are then integrated in
a combined cost function for blur kernel estimation. Experimental results show
that the proposed approach is more robust and achieves higher quality results than
previous methods on both real world and synthetic examples.

1 Introduction

Blind image deblurring, i.e. estimating both the blur kernel and the latent sharp image
from an observed blurry image is a significantly ill-posed problem. It has been exten-
sively studied in recent years, and various image priors have been explored in recent
approaches for alleviating the difficulty. The problem however remains unsolved. In
particular, as we will show later, although each individual method performs well in
certain situations, none of them can reliably produce good results in all cases.

Among recent deblurring approaches, edge-based methods and power-spectrum-
based ones have shown impressive performance [1,2,3,4,5,6,7,8,9,10,11]. Edge-based
methods recover the blur kernel mainly from salient image edges, assuming the blurry
edges extracted from the input image correspond to sharp, step-like edges in the latent
image. Power-spectrum-based methods make the white random distribution assumption
on the gradient of the latent image, so that the kernel’s power spectrum can be recovered
from the blurred image in a closed form. Phase retrieval methods can then be applied to
recover the final blur kernel from its power spectrum.

The underlying assumptions of both approaches however do not hold in some com-
mon situations. For instance, edge-based methods may fail on images where strong
edges are lacking or difficult to extract and analyze. On the other hand, the power-
spectrum-based methods can handle small-scale textures well, but may be negatively
? Sunghyun Cho is currently with Samsung Electronics.
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2 Tao Yue, Sunghyun Cho, Jue Wang and Qionghai Dai

affected by strong edges and tend to produce erroneous kernel components when they
are abundant. Given that the failure modes of these two approaches are complimen-
tary to each other, in order to achieve better robustness and a wider application range,
we propose a hybrid method that simultaneously utilizes both the strong edges and the
power spectrum information extracted from an input image for blur kernel estimation.
Specifically, we detect and separate the input image into two components favored by
each method, and develop an optimization process that takes into account both types
of information for reliable blur kernel estimation. We conduct thorough experiments
to show that the proposed method is indeed more robust and achieves higher quality
results in general than previous approaches that use only one source of information.

The main contributions of the proposed approach include: (1) a modified blur kernel
power spectrum estimation approach that eliminates the negative impact from structural
image edges; and (2) a hybrid kernel estimation method that effectively integrates edge
and power spectrum information.

1.1 Related work

Strong edges are important components in nature images, and have been heavily ex-
plored for image deblurring. Existing approaches either extract strong edges explicitly
and use them for kernel estimation [1,2,3,4,5], or use them implicitly by incorporating
them into regularization terms [6, 7, 8]. In explicit methods, Jia [1] recovers the blur
kernel from transparency on blurry edges. Joshi et al. [2] utilize sub-pixel differences
of Gaussian edge detectors to detect edges from blurry image and predict their sharp
version. Cho and Lee [4] propose to use simple image filters to predict sharp edges in
the latent image from blurry ones in the input for kernel estimation. This method is fur-
ther improved by Xu and Jia [12] by using better edge prediction and selection methods.
Zhong et al. [13] estimate 1D profiles of the kernel from edges and reconstruct the ker-
nel by inverse Radon transform. More recently Sun et al. [9] improve Cho and Lee [4]’s
method by predicting sharp edges using patch-based data driven methods. In implicit
methods, Fergus et al. [14] use the heavy-tail prior of image gradients and marginalize
the joint distribution over all possible sharp images. Shan et al. [6] use sparse priors to
suppress insignificant structures for kernel estimation. Krishnan et al. [7] instead pro-
pose to use L1/L2 regularizer for edge selection. Recently, Xu et al. [8] propose to use
L0 sparse representation for the same purpose.

Power-spectrum-based methods try to recover the blur kernel directly from the in-
put image without alternatingly estimating the blur kernel and the latent sharp image,
by using the fact that the gradients of natural images are approximately uncorrelated.
Yitzhaky et al. [15] handle 1D motion blur by analyzing the characteristics of the power
spectrum of the blurred image along the blur direction. Similarly Hu et al. [10] use an
eight-point Laplacian whitening method to whiten the power spectrum of the image
gradients and use it for estimating a 2D blur kernel. To deal with the irregularities of
strong edges, Goldstein et al. [11] use a power-law model as well as a dedicated spectral
whitening formula for achieving more robust kernel estimation.

For spectrum-based methods, phase retrieval is a key step to recover the blur ker-
nel from the estimated power spectrum. It is a well studied problem in optical imag-
ing field such as electron microscopy, wave front sensing, astronomy, crystallography,
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Hybrid Image Deblurring by Fusing Edge and Power Spectrum Information 3

etc. Fienup [16] compare the classical phase retrieval algorithms and report the stag-
nate problem of the existing algorithms. He and Wackerman [17] discuss the stagnate
problem in detail and propose several solutions to overcome different kinds of stag-
nate. Luke [18] proposes a Relaxed Averaged Alternating Reflection (RAAR) algo-
rithm which is later adopted by Goldstein and Fattal’s approach [11]. Osherovich [19]
recently proposes a method that achieves fast and accurate phase retrieval from a rough
initialization.

2 Overview

2.1 Blur model

To model the camera shake in a blurred image, we use a conventional convolution based
blur model:

b = k ∗ l + n, (1)

where b is a blurred image, k is a blur kernel, l is a latent image, and n is noise. ∗ is
the convolution operator. We assume that n follows an i.i.d. Gaussian distribution with
zero mean. We treat b, k, l, and n as vectors, i.e., b is a vector consisting of pixel values
of a blurred image. Eq. (1) can be also expressed as:

b = Kl + n = Lk + n, (2)

where K and L are convolution matrices corresponding to the blur kernel k and the
latent image l, respectively.

2.2 Framework

Given that edge-based and power-spectrum-based methods have different advantages,
combining them together seems to be a natural idea. However, doing it properly is not
trivial. Directly combining the objective functions in both methods together may make
the hybrid algorithm to perform worse than either one. That is because the salient edges
and the power spectrum are only preferred by one method and may seriously deteriorate
the other. In fact, both edge-based and power-spectrum-based methods have their own
dedicated operations to remove the influence of undesired image information. For in-
stance, bilateral and shock filterring are used in Cho and Lee’s method [4] for removing
small edges being considered for kernel estimation, and directional whitening has been
used in Goldstein and Fattal’s approach [11] for minimizing the influence of strong
edges on computing the power spectrum. In this paper, we propose a framework that
explicitly considers both the helpful and harmful image components of each method, so
that the hybrid approach can perform better than each individual method.

The flowchart of the proposed hybrid approach is shown in Fig. 1. We adopt the
widely-used multi-scale framework which has shown to be effective for kernel estima-
tion, especially for edge-based methods [6, 7, 8, 9, 12]. In each scale, a latent image
composed of only strong edges is predicted by image filtering operations as done in [4].
We use the same filtering operations and parameter settings to Cho and Lee’s method
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Strong Edges Prediction

Blurred Image
Hybrid Kernel 

Estimation
Fast Deconvolution

Final 

Deconvolution

Kernel PS Estimation

Fig. 1. The flowchart of the proposed hybrid deblurring method.

for this step. We refer the readers to [4] for details. The power spectrum of the kernel is
estimated by compensating the initial power spectrum computed from the blurry image
using the extracted edges in the latent image. The blur kernel is estimated then by opti-
mizing a hybrid objective function that contains both edge and power spectrum terms.
In each iteration, the latent image is computed fast by the deconvolution method with
L2 regularization term [4]. Finally, a state-of-the-art non-blind deconvolution algorithm
with hyper-Laplacian priors [20] are applied to generate the final deblurred image.

In Sec. 3 and Sec. 4, we will describe the kernel power spectrum estimation and hy-
brid kernel estimation steps in more detail, which are our main technical contributions.

3 Kernel Power Spectrum Estimation

In this step, we estimate the power spectrum of the blur kernel from the input image,
with the help of the current estimate of the latent image to reduce estimation errors
caused by strong edges. The power spectrum estimated in this step will be used as a
constraint in the blur kernel estimation process in Sec. 4.

Fig. 2. The autocorrelation maps of Koch snowflake fractal images with 1st, 2nd, 4th and 6th
iterations, from top-left to bottom-right, respectively. The edges with large gradient magnitude
are regarded as good edges for edge-based methods. However, for spectrum based methods the
straightness is more important. We can see that all the synthetic images have the same gradient
magnitude, while they have totally different pattern in spectrum domain.
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Hybrid Image Deblurring by Fusing Edge and Power Spectrum Information 5

According to the power law of natural images [11], which assumes that natural
images have fractal-like structures (as shown in Fig. 2), the power spectrum of a sharp
image follows an exponential-like distribution. In other words, the autocorrelation of
the gradient map of a natural sharp image can be approximated by a delta function:

(d ∗ l)⊗ (d ∗ l) ≈ δ, (3)

where d is a derivative filter and ⊗ is the correlation operator. Given a blurry input
image b, by adopting Eq. (1), we have:

(d ∗ b)⊗ (d ∗ b) = (d ∗ (k ∗ l + n))⊗ (d ∗ (k ∗ l + n))

≈ k ⊗ k ∗ δ + cnδ, (4)

where cn is the magnitude coefficient that can be computed as cn = 2σ2
r , and σ2

r is the
variance of noise n. In the frequency domain, Eq. (4) becomes:

F(d)F(d)F(b)F(b) ≈ |F(k)|2 + cn, (5)

where F(·) denotes Fourier transform and (·) is the complex conjugate. Therefore, the
power spectrum of the blur kernel k can be approximated as:

|F(k)| ≈
√
F(d)F(d)F(b)F(b)− cn. (6)

In practice, the power spectrum assumption in Eq. (3) may fail for images that
contain strong edges (see Fig. 3(f)). On the other hand, not all strong edges will violate
the assumption, and our observation is that only straight lines have a strong effect on
it. To illustrate this finding, we show the autocorrelation maps of the gradients of Koch
snowflake fractal images with different iterations in Fig. 2. It is obvious that the straight
edges affect the power spectrum assumption significantly, and as the fractal grows the
autocorrelation map follows the assumption better and better.

Therefore, to avoid bad effects from such straight lines, our method detects strong
straight lines explicitly at each iteration, and remove the effect of them when computing
the power spectrum. Specifically, we detect the straight lines from the current estimate
of the latent image l using EDLine [21], and remove lines that are shorter than the
blur kernel size. A dilation operation is applied on the detected line maps to generate a
straight line mask.

Given the straight line mask, we can decompose the image l into two components
as:

l = ls + ld, (7)

where ls is the structure component derive by masking l with the straight line mask, and
ld is the rest detail component. Eq. (4) then becomes:

(d ∗ b)⊗ (d ∗ b) ≈ k ⊗ k ∗ ((d ∗ ls)⊗ (d ∗ ls) + cdδ) + cnδ, (8)

where cd is the magnitude coefficient of the detail component. Because the Fourier
transform of impulse δ is a constant, cd can be approximated as:

cd =
1

N

∑
ω1,ω2

F(d)F(d)F(ld)F(ld), (9)
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6 Tao Yue, Sunghyun Cho, Jue Wang and Qionghai Dai

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Estimating the power spectrum of the blur kernel on a synthetic example. (a) latent image;
(e) synthetically blurred input image; (b) power spectrum of (a); (f) power spectrum of kernel es-
timated from Eq. (6); (c) our estimated power-spectrum correction term (Denominator in Eq. 10);
(g) corrected power spectrum map from Eq. (10); (d) the ground truth blur kernel; (h) the auto-
correlation map of the ground truth kernel. Note that the corrected power spectrum in (g) is much
closer to (h) compared with the original power spectrum in (f).

where (ω1, ω2) is the index of the 2D Fourier transform, and N is the number of ele-
ments in F(ld). By applying Fourier transforms to Eq. (8), we can derive a new approx-
imation for the power spectrum of the kernel K as:

|F(k)| =

√
F(d)F(d)F(b)F(b)− cn
F(d)F(d)F(ls)F(ls) + cd

. (10)

Fig. 3 shows an example of kernel power spectrum estimation on a synthetic exam-
ple. It shows that the strong structural edges in the input image can significantly affect
the power spectrum estimation, while our corrected power spectrum is much closer to
the ground truth.

4 Hybrid Kernel Estimation

We now describe how to incorporate the estimated kernel power spectrum and the ex-
tracted strong edges into a unified framework for blur kernel estimation.

4.1 The formulation

Our optimization objective for kernel estimation contain a few terms. First, following
previous work, we adopt a data term which is derived from the linear blur model in
Eq. (1):

Ed(k) = ‖px ∗ k − bx‖2 + ‖py ∗ k − by‖2, (11)
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Hybrid Image Deblurring by Fusing Edge and Power Spectrum Information 7

where px and py are gradient maps of latent sharp image, bx and by are gradient maps
of the input image b along the x and y directions, respectively.

Given the power spectrum information of the blur kernel, the magnitude of the
Fourier transform of the blur kernel, which is equivalent to the power spectrum, can
be constrained as:

Es(k) = ‖|F(k)| − |F(ks)|‖2 , (12)

where F(ks) is computed as in Eq. (10). Our energy function for kernel estimation then
can be formulated as:

E(k) = Ed(k) + αEs(k) + β‖k‖1 + γ‖∇k‖22, (13)

where α, β and γ are the weights for the power-spectrum-based, kernel sparsity and
smoothness constraints respectively. In this paper, the weight of spectrum term α is set
adaptively, and the rest parameters are set empirically by, β = 150/(mn) and γ =
0.2/max(m,n), where m,n are kernel size in x, y direction.

4.2 Optimization

To minimize the proposed energy function in Eq. (13), the phase retrieval problem need
to be solved. Traditional phase retrieval algorithms [16, 17, 18] suffer from the well-
known stagnation problem. Surprisingly, we found that a rough initialization of phase
information provided by structural edges can greatly alleviate this problem. We empir-
ically tested several phase retrieval methods, and found that even the simplest gradient
descent method (error reduction) which has been shown to seriously suffer from stag-
nation can produce promising result in our framework. Therefore, we adopt this method
for phase retrieval in our system.

Specifically, The gradient of the power-spectrum-based constraint term is derived
as:

d|||F(k)| − |F(ks)|||2

dk
= 2(k − k′), (14)

where
k′ = F−1

(
|F(ks)|eiθ

)
. (15)

Here, eiθ is the phase of the Fourier transform of the kernel k. For the detailed deriva-
tion, we refer the readers to [16]. The gradient of Eq. (13) becomes:

dE(k)

dk
=2PTx Pxk + 2PTx Px+

2PTy Pyk + 2PTy by+

2α(k − k′) + 2βWk + 2γLk,

(16)

where k is kernel in vector form, and L is Laplace operator, W is a diagonal matrix
whose entries are defined by

Wi,i =

{
1
ki

if ki 6= 0

0 if ki = 0
, (17)
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8 Tao Yue, Sunghyun Cho, Jue Wang and Qionghai Dai

where ki is the i-th elements of kernel k. Finally, we set the descent direction g as
g = −dE(k)/dk.

After determining the decent direction g, the optimal step length ζ is computed by
minimizing Eq. (13) with respect to the step length ζ. Then, by finding the zero of
dE(k + ζg)/dζ, we can derive the optimal ζ as:

ζ =
gT g

gT
(
PTx Px + PTy Py + αI + βW + γL

)
g
. (18)

In our implementation, the iterative procedure will be terminated when the update step
size ζ is smaller than 10−7 or the iteration number is larger than 300.

4.3 Adaptive weighting

The weight α in Eqn. 13 is an important parameter that determines the relative impor-
tance of the power-spectrum-based term versus the edge-based ones. Ideally, it should
be adaptively selected for a specific input image, based on which type of information
can be extracted more reliably. The optimal weight thus depends on various factors of
the input image, including the distributions and characteristics of the structural edges
and textured regions, as well as the underlying blur kernel. However, given that we
do not know the blur kernel beforehand, it is difficult to derive an analytic solution
for determining the optimal α at the beginning of optimizing process. To alleviate this
problem, we propose a machine learning approach to predict good α from low-level im-
age features including both structure and texture descriptors. In particular, considering
the characteristics of edge-based and spectrum-based methods, we extract the following
two features:

1. Distributions of strong edges in different directions. We extract the straight line
mask from the input image as described in Sec. 3, and compute the histogram of
edge pixels in the extracted straight lines in different edge direction bins. In our im-
plementation we divide the edge directions into 8 bins, resulting in a 8-dimensions
vector that describes the richness of the strong edges that can be extracted from
the input image. Intuitively, a balanced histogram usually means that strong edges
exist in different directions, providing good constraints for solving the blur kernel
reliably.

2. The richness of image details. We exclude the pixels inside the straight line mask
and use the rest of pixels to compute a gradient magnitude histogram. This is un-
der the consideration that if more pixels have large gradient magnitudes, then the
input image probably contains rich texture details that are beneficial to the power-
spectrum-based component. In our implementation we use a 8-bin histogram.

The complete feature vector for an input image thus have 16 dimensions. To train
a regression model for predicting α, we used the 640-image dataset proposed by Sun
et al. [9] as the training dataset, which contains the blurred input image and the ground
truth latent image for each example. According to our experiments, the algorithm is not
very sensitive for small changes of α. Thus, for each test image, we deblurred it using
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Ground Truth Cho & Lee Goldstein & Fattal Sun et al. -Nat Our

Fig. 4. Qualitative comparisons on four images from Sun et al.’s dataset [9]. From left to right:
ground truth image and kernel, latent image and kernel estimated by Cho and Lee [4], Goldstein
and Fattal [11], Sun et al. [9] and proposed method, respectively.

our method with 5 different settings of α: α = 0.1, 1, 10, 100, 1000, and chose the one
with the best deblurring quality as the target α value. In practice we found this discrete
set of α weights can well represent the reasonable range of this parameter. We used
the SVM as the classification model to label each input image with an α value. 480
images were randomly selected from the whole dataset for training and the remaining
160 images were used for testing. On the test dataset, the mean SSIM achieved by our
method using the α weights predicted by the SVM model is 0.8195, while the mean
SSIM achieved by using the ground truth α weights is 0.8241, just slightly higher than
the trained model. This suggests that the proposed learning approach can effectively
select good α values given an input blurry image.

5 Experiment Results

To evaluate the proposed method, we have applied it on both synthetic and real test
datasets that have been proposed in previous work. We also compare our approach with
state-of-the-art single image deblurring methods, both qualitatively and quantitatively.
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Since our contribution is in the kernel estimation step, to ensure a fair comparison, we
use Krishnan and Fergus’s deconvolution method [20] to generate the final outputs for
all kernel estimation approaches.

5.1 Comparisons on synthetic data

We first apply our algorithm on some synthetic datasets that have been recently pro-
posed.
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Fig. 5. Success ratio vs. error ratio of our method and other algorithms on Sun et al.’s dataset [9].

Sun et al.’s dataset [9]. This dataset contains 640 images generated from 80 high
quality nature images and 8 blur kernels. Fig. 4 shows some qualitative comparisons
between our method and other state-of-the-art algorithms. It suggest that our methods
achieves higher quality results than either edge-base (Cho and Lee [4] and Xu and
Jia [12]) methods or power-spectrum-based (Goldstein and Fattal [11]) ones. Fig. 5
shows the cumulative distrutribution of error ratio metric (ratio between SSD errors
of images deblurred from estimated and ground truth kenrels, see [22] for details) on
this dataset, which also suggests that our method performs the best on this large scale
dataset. We also tested our algorithm with different constant spectrum weights (α), and
it achieved the best performance when α = 100 on this dataset, which is better than
previous algorithms, but still worse than using adaptive weights proposed in Sec. 4.3.

Levin et al.’s dataset [22]. This dataset has 32 images generated from 4 small size
images (255×255 pixels) and 8 blur kernels (kernels’ supports varys from 10∼25 pix-
els). All the kernels estimated by Cho and Lee [4], Goldstein and Fattal [11] and
proposed methods are shown in Fig. 6(a)(b)(c) respectively. Notice that the power-
spectrum-based method does not perform well on this dataset, as some of the kernels
shown in Fig. 6(b) contain large errors. This is because the corresponding images in this
dataset do not contain enough image texture for reliable kernel estimation. Our hybrid
method correctly handles this situation, and generates results that are mostly similar but
slightly better to those of the edge-based method [4].
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(a) Cho and Lee [4] (b) Goldstein and Fattal [11] (c) Our

Fig. 6. Kernels estimated by by Cho and Lee [4], Goldstein and Fattal [11] and proposed
methods on Levin et al.’s dataset [22].
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Fig. 7. Error ratios of different methods on Levin et al.’s dataset [22].

Fig. 7 shows the cumulative distributions of error ratio on this dataset. Note that the
success rates in this plot are lower than those in the original plot [22]. This is because
we found that since the kernel sizes are relatively large with respect to the image sizes in
this dataset, the border artifacts are serious, and the SSD error mainly occurs in the bor-
der region. To eliminate the influence of border artifacts introduced by deconvolution
methods, we cut off the border region in the error ratio calculation.

As shown in Eq. (13), our hybrid method contains edge-based terms that are similar
to those in Cho and Lee’s method [4], and a power spectrum term similar to the one
in Goldstein and Fattal’s method [11]. The hybrid method performs better than both
individual methods on this dataset, showing the advantage of this fusion strategy.

Image without strong edges. To better understand the effectiveness of the spectrum
component of the proposed method, we apply it on a texture image shown in Fig. 9(a,b).
The results estimated by Cho and Lee [4], Goldstein and Fattal [11] and our method are
shown in Fig. 9(c), (d) and (e), respectively. It is not a surprise that the edge-based
method (Cho and Lee [4]) completely fails on this image, since it contains no strong
edges. On the other hand, both Goldstein and Fattal [11] and our method produce good
results given that the blur kernel can be well extracted from the power spectrum infor-
mation.
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(a) Blurred (b) Cho and Lee [4] (c) Goldstein and Fat-
tal [11]

(d) Our

Fig. 8. Qualitative Comparisons of one image from dataset [23].

(a) Ground Truth (b) Blurred (c) Cho & Lee [4] (d) Goldstein & Fattal [11] (e) Our

Fig. 9. Performance of proposed algorithm on the image without strong edges.

5.2 Comparisons on real examples

Non-uniform dataset from Köhler et al. [23]. This dataset contains real blurry images
systematically generated from 4 sharp image and 12 non-uniform kernels. The quantita-
tive comparison results on this dataset is shown in Table. 1. It suggests that the proposed
method consistently achieves better performance than the state-of-the-art image deblur-
ring algorithms, including uniform and non-uniform, edge-based and spectrum-based
methods.

In this dataset, the spectrum-based method [11] performs much worse than other
methods. This is because the stagnate and robustness problem of the phase retrieval
algorithm is much more severe when the blur kernel is large. Because our algorithm
can take advantage of the phase information estimated from structural image edges, the

Table 1. Quantative comparsion on Köhler et al.’s dataset [23]

Methods Image 01 Image 02 Image 03 Image 04 Total
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Whyte et al. [24] 27.5475 0.7359 22.8696 0.6796 28.6112 0.7484 24.7065 0.6982 25.9337 0.7155
Hirsch et al. [25] 26.7232 0.7513 22.5867 0.7290 26.4155 0.7405 23.5364 0.7060 24.8155 0.7317

Shan et al. [6] 26.4253 0.7001 20.5950 0.5872 25.8819 0.6920 22.3954 0.6486 23.8244 0.6570
Fergus et al. [14] 22.7770 0.6858 14.9354 0.5431 22.9687 0.7153 14.9084 0.5540 18.8974 0.6246
Krishnan et al. [7] 26.8654 0.7632 21.7551 0.7044 26.6443 0.7768 22.8701 0.6820 24.5337 0.7337

Goldstein & Fattal [11] 25.9454 0.7024 21.3887 0.6836 24.2768 0.6989 23.3397 0.6820 23.7377 0.6917
Cho & Lee [4] 28.9093 0.8156 24.2727 0.8008 29.1973 0.8067 26.6064 0.8117 27.2464 0.8087
Xu & Jia [12] 29.4054 0.8207 25.4793 0.8045 29.3040 0.8162 26.7601 0.7967 27.7372 0.8095

Our 30.1340 0.8819 25.4749 0.8439 30.1777 0.8740 26.7661 0.8117 28.1158 0.8484
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Blurred Cho & Lee Goldstein & Fattal Our

Fig. 10. Comparisons on real-world examples.

phase retrieval algorithm works much better in our method, which in turn improves the
performance of the hybrid kernel estimation.

Real-world examples. Fig. 10 shows three real-world blurry images with unknown
blur parameters, and the deblurring results of Cho and Lee [4], Goldstein and Fattal [11]
and the proposed approach. It suggest that previous edge-based and power-spectrum-
based methods cannot achieve satisfactory results on these examples. In contrast, our
approach is able to generate much higher quality results on these examples.

5.3 The contribution of the two priors

One may wonder how much contribution each prior has in the hybrid approach. Given
that most natural images contain some amount of sharp or strong edges, edge informa-
tion is more universal, thus the edge prior plays a more dominant role in determining
the blur kernel. Our approach reveals that the true merit of the power-spectrum prior
is its ability to augment edge-based information. When edge-based methods fail badly,
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(a) Blurred (b) Cho and Lee [4] (c) Whyte et al. [24] (d) Our results

Fig. 11. Comparisons on an image with significant non-uniform blur.

such as the examples in the 3rd and 4th rows of Fig. 4, power-spectrum prior leads to
significant improvements. In these examples, although strong edges exist, they concen-
trate in few directions, making kernel estimation ill-posed. The complementary infor-
mation from the power spectrum makes kernel estimation possible in these cases. In
other cases where edge-based methods generate reasonable results, incorporating the
power-spectrum prior further improves the kernel accuracy and leads to higher quality
results. To demonstrate this we conducted additional experiments by setting alpha=0
(meaning no power-spectrum at all), and the quantitative results are significantly worse
in all data sets (e.g. 2.7dB worse on dataset of [9]).

5.4 Limitation

The main limitation of the proposed approach is that it cannot handle significant non-
uniform blur well, because the power spectrum prior is based on global statistics that
does not consider spatially-varying blur. In Fig. 11 we apply our algorithm on one of
the images that contain significant non-uniform blur in Whyte et al.’s dataset [24]. It
shows that the result generated by our method (Fig. 11(d)) is worse than that of the
non-uniform deblurring algorithm (Fig. 11(c)), and is comparable to Cho and Lee’s
result (Fig. 11(b)). This suggests that the power spectrum term does not help when
dealing with non-uniform blur.

6 Conclusion

We propose a new hybrid deblurring approach that restores blurry images by the aid
of both edge-based and power-spectrum-based priors. Our approach extracts the strong
edges from the image, and use them for estimating a more accurate power spectrum of
the kernel. Both the edges and the improved power spectrum of the blur kernel are then
combined in an optimization framework for kernel estimation. Experimental results
show that our method achieves better performance than either edge-based or power-
spectrum-based methods.

Acknowledgements: This work was supported by the Project of NSFC (No. 61327902,
61035002 and 61120106003).
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